|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题(含详细解析)
    立即下载
    加入资料篮
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题(含详细解析)01
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题(含详细解析)02
    2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线定向测评试题(含详细解析)03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021学年第十三章 相交线 平行线综合与测试测试题

    展开
    这是一份2021学年第十三章 相交线 平行线综合与测试测试题,共29页。试卷主要包含了如图所示,直线l1∥l2,点A,如图,直线b等内容,欢迎下载使用。

    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列说法中,正确的是( )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    2、如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )
    A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠E
    C.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°
    3、若∠1与∠2是内错角,则它们之间的关系是 ( )
    A.∠1=∠2B.∠1>∠2C.∠1<∠2D.∠1=∠2或∠1>∠2或∠1<∠2
    4、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
    A.70°B.80°C.100°D.110°
    5、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )
    A.164°12'B.136°12'C.143°88'D.143°48'
    6、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )
    A.S1>S2B.S1=S2C.S1<S2D.不确定
    7、如图,直线b、c被直线a所截,则与是( )
    A.对顶角B.同位角C.内错角D.同旁内角
    8、用等腰直角三角板画∠AOB=45°,将三角板沿OB方向平移到如图所示的虚线M处后绕点M逆时针旋转22°,则三角板的斜边与射线OA的夹角α为( )度.
    A.25°B.45°C.30°D.22°
    9、如图,直线被所截,下列说法,正确的有( )
    ①与是同旁内角;
    ②与是内错角;
    ③与是同位角;
    ④与是内错角.
    A.①③④B.③④C.①②④D.①②③④
    10、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
    A.39°B.41°C.49°D.51°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,直线AB,CD相交于点O, 过O点作EF⊥AB,若∠1=35º,则∠2=_____ º.
    2、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.
    3、如图,AD是∠EAC的平分线,AD∥BC,∠B=40°,则∠DAC的度数为____.
    4、如图,已知 AB∥CD∥EF,BC∥AD,AC 平分∠BAD,那么图中与∠AGE 相等的角(不包括∠AGE)有_____个.
    5、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图,直线AB,CD,EF相交于点O,
    (1)指出∠AOC,∠EOB的对顶角及∠AOC的邻补角.
    (2)图中一共有几对对顶角?指出它们.
    2、如图,在ABC中,DEAC,DFAB.
    (1)判断∠A与∠EDF之间的大小关系,并说明理由.
    (2)求∠A+∠B+∠C的度数.
    3、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.
    4、完成下面的证明
    如图,点B在AG上,AGCD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.
    求证:∠F=90°.
    证明:∵AGCD(已知)
    ∴∠ABC=∠BCD(____)
    ∵∠ABE=∠FCB(已知)
    ∴∠ABC﹣∠ABE=∠BCD﹣∠FCB
    即∠EBC=∠FCD
    ∵CF平分∠BCD(已知)
    ∴∠BCF=∠FCD(____)
    ∴____=∠BCF(等量代换)
    ∴BECF(____)
    ∴____=∠F(____)
    ∵BE⊥AF(已知)
    ∴____=90°(____)
    ∴∠F=90°.
    5、已知:如图,直线,直线MN交EF,PO于点A,B,直线HQ交EF,PO于点D,C,DG与OP交于点G,若,,.
    (1)求证:;
    (2)请直接写出的度数.
    6、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
    (1)请判断AB与CD的位置关系并说明理由;
    (2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
    (3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
    7、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?
    8、请把下列证明过程及理由补充完整(填在横线上):
    9、直线、相交于点,平分,,,求与的度数.
    10、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
    (基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
    证明:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD( )
    ∵MN∥AB,
    ∴∠A=( )( )
    ∵MN∥CD,
    ∴∠D= ( )
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    (类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
    (应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.
    -参考答案-
    一、单选题
    1、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    2、C
    【分析】
    如图,过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据AB∥EF可得CG∥DH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.
    【详解】
    如图,过点C作CG∥AB,过点D作DH∥EF,
    ∴∠A=∠ACG,∠EDH=180°﹣∠E,
    ∵AB∥EF,
    ∴CG∥DH,
    ∴∠CDH=∠DCG,
    ∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),
    ∴∠A﹣∠ACD+∠CDE+∠E=180°.
    故选:C.
    【点睛】
    本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.
    3、D
    【分析】
    根据内错角角的定义和平行线的性质判断即可.
    【详解】
    解:∵只有两直线平行时,内错角才可能相等,
    ∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
    三种情况都有可能,
    故选D.
    【点睛】
    本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
    4、B
    【分析】
    先证明DEBC,根据平行线的性质求解.
    【详解】
    解:因为∠B=∠ADE=70°
    所以DEBC,
    所以∠DEC+∠C=180°,所以∠C=80°.
    故选:B.
    【点睛】
    此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
    5、D
    【分析】
    根据邻补角及角度的运算可直接进行求解.
    【详解】
    解:由图可知:∠AOC+∠BOC=180°,
    ∵∠COB=36°12',
    ∴∠AOC=180°-∠BOC=143°48',
    故选D.
    【点睛】
    本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
    6、B
    【分析】
    由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.
    【详解】
    解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.
    故选:B.
    【点睛】
    本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.
    7、B
    【分析】
    根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
    【详解】
    ∠1与∠2是同位角
    故选:B
    【点睛】
    本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
    8、D
    【分析】
    由平移的性质知,AO∥SM,再由平行线的性质可得∠WMS=∠OWM,即可得答案.
    【详解】
    解:由平移的性质知,AO∥SM,
    故∠WMS=∠OWM=22°;
    故选D.
    【点睛】
    本题利用了两直线平行,内错角相等,及平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
    9、D
    【分析】
    根据同位角、内错角、同旁内角的定义可直接得到答案.
    【详解】
    解:①与是同旁内角,说法正确;
    ②与是内错角,说法正确;
    ③与是同位角,说法正确;
    ④与是内错角,说法正确,
    故选:D.
    【点睛】
    此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.
    10、C
    【分析】
    由题意直接根据平行线的性质进行分析计算即可得出答案.
    【详解】
    解:如图,
    ∵AB∥CD,∠C=131°,
    ∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
    ∵AE∥CF,
    ∴∠A=∠C=49°(两直线平行,同位角相等).
    故选:C.
    【点睛】
    本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
    二、填空题
    1、55
    【分析】
    由已知可得,,进而根据,∠1=35º,即可求得.
    【详解】
    EF⊥AB,

    ,∠1=35º,
    故答案为:55
    【点睛】
    本题考查了两条相交线所成的角,垂直的定义,平角的定义,掌握垂直的定义是解题的关键.
    2、
    【分析】
    直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.
    【详解】
    解:∵OA⊥OB,
    ∴∠AOB=90°,
    ∴∠1+∠2=90°,
    ∵∠1=55°16′,
    ∴∠2=90°﹣55°16′=34°44′.
    故答案为:34°44′.
    【点睛】
    本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.
    3、40°
    【分析】
    根据平行线的性质可得∠EAD=∠B,根据角平分线的定义可得∠DAC=∠EAD,即可得答案.
    【详解】
    ∵AD∥BC,∠B=40°,
    ∴∠EAD=∠B=40°,
    ∵AD是∠EAC的平分线,
    ∴∠DAC=∠EAD=40°,
    故答案为:40°
    【点睛】
    本题考查平行线的性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
    4、5
    【分析】
    由AB∥CD∥EF,可得∠AGE=∠GAB=∠DCA;由BC∥AD,可得∠GAE=∠GCF;又因为AC平分∠BAD,可得∠GAB=∠GAE;根据对顶角相等可得∠AGE=∠CGF.所以图中与∠AGE相等的角有5个.
    【详解】
    解:∵AB∥CD∥EF,
    ∴∠AGE=∠GAB=∠DCA;
    ∵BC∥AD,
    ∴∠GAE=∠GCF;
    又∵AC平分∠BAD,
    ∴∠GAB=∠GAE;
    ∵∠AGE=∠CGF.
    ∴∠AGE=∠GAB=∠DCA=∠CGF=∠GAE=∠GCF.
    ∴图中与∠AGE相等的角有5个
    故答案为:5.
    【点睛】
    本题考查对顶角、邻补角及角平分线的定义和平行线的性质,根据题意仔细观察图形并找出全部答案是解题关键.
    5、130°
    【分析】
    根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.
    【详解】
    解:∵AB、CD相交于点O,
    ∴∠BOD=∠AOC=40°.
    ∵OD平分∠BOF,
    ∴∠DOF=∠BOD=40°,
    ∵OE⊥CD,
    ∴∠EOD=90°,
    ∴∠EOF=∠EOD+∠DOF=130°.
    故答案为130°.
    【点睛】
    本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.
    三、解答题
    1、(1)∠AOC的对顶角是∠BOD,∠EOB的对顶角是∠AOF,.∠AOC的邻补角是∠AOD,∠BOC;(2)共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD
    【分析】
    根据对顶角的定义:两个角有一个公共点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角叫做对顶角;邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种位置关系的两个角叫做邻补角,进行求解即可.
    【详解】
    解:(1)由题意得:∠AOC的对顶角是∠BOD,
    ∠EOB的对顶角是∠AOF.
    ∠AOC的邻补角是∠AOD,∠BOC.
    (2)图中共有6对对顶角,它们分别是∠AOC与∠BOD,∠AOE与∠BOF,∠AOF与∠BOE,∠AOD与∠BOC,∠EOD与∠COF,∠EOC与∠FOD.
    【点睛】
    本题主要考查了对顶角和邻补角的定义,熟知定义是解题的关键.
    2、(1)两角相等,见解析;(2)180°
    【分析】
    (1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
    (2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
    【详解】
    (1)两角相等,理由如下:
    ∵DE∥AC,
    ∴∠A=∠BED(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠EDF=∠BED(两直线平行,内错角相等),
    ∴∠A=∠EDF(等量代换).
    (2)∵DE∥AC,
    ∴∠C=∠EDB(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠B=∠FDC(两直线平行,同位角相等).
    ∵∠EDB+∠EDF+∠FDC=180°,
    ∴∠A+∠B+∠C=180°(等量代换).
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    3、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
    【分析】
    三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
    【详解】
    (1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
    (2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
    (3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
    以第一个命题为例证明如下:
    ∵AB∥DE,
    ∴∠B=∠DOC.
    ∵BC∥EF,
    ∴∠DOC=∠E,
    ∴∠B=∠E.
    【点睛】
    本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
    4、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义
    【分析】
    根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.
    【详解】
    证明:∵AG∥CD(已知),
    ∴∠ABC=∠BCD(两直线平行,内错角相等),
    ∵∠ABE=∠FCB(已知),
    ∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,
    即∠EBC=∠FCD,
    ∵CF平分∠BCD(已知),
    ∴∠BCF=∠FCD(角平分线的定义),
    ∴∠EBC=∠BCF(等量代换),
    ∴BE∥CF(内错角相等,两直线平行),
    ∴∠BEF=∠F(两直线平行,内错角相等),
    ∵BE⊥AF(已知),
    ∴∠BEF=90°(垂直的定义),
    ∴∠F=90°.
    故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.
    【点睛】
    本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.
    5、(1)见解析;(2)
    【分析】
    (1)根据可得,,再根据内错角相等两直线平行即可得证;
    (2)根据两直线平行的性质可得,从而可得,再由即可求解.
    【详解】
    解:(1)∵,
    ∴,
    ∵,
    ∴,
    ∴;
    (2)∵,,
    ∴,

    ∵,
    ∴,
    ∴.
    【点睛】
    本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.
    6、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
    【分析】
    (1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
    (2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
    (3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
    【详解】
    (1)∵CE平分∠ACD,AE平分∠BAC,
    ∴∠BAC=2∠EAC,∠ACD=2∠ACE,
    ∵∠EAC+∠ACE=90°,
    ∴∠BAC+∠ACD=180°,
    ∴AB∥CD
    (2)∠BAE+∠MCD=90°;理由如下:
    如图,过E作EF∥AB,
    ∵AB∥CD,
    ∴EF∥AB∥CD,
    ∴∠BAE=∠AEF,∠FEC=∠DCE,
    ∵∠AEC=∠AEF+∠FEC=90°,
    ∴∠BAE+∠ECD=90°,
    ∵∠MCE=∠ECD=∠MCD,
    ∴∠BAE+∠MCD=90°.
    (3)如图,过点C作CM//PQ,
    ∴∠PQC=∠MCN,∠QPC=∠PCM,
    ∵AB∥CD,
    ∴∠BAC+∠ACD=180°,
    ∵∠PCQ+∠PCM+∠MCN=180°,
    ∴∠QPC+∠PQC+∠PCQ=180°,
    ∴∠BAC=∠PQC+∠QPC.
    【点睛】
    本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
    7、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角
    【分析】
    根据对顶角和邻补角的定义求解即可.
    【详解】
    解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;
    根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.
    【点睛】
    此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。
    8、∠CAD;两直线平行,内错角相等;∠CAD;等量代换;等式的性质;∠CAD;等量代换;同位角相等,两直线平行
    【分析】
    根据AD∥BC,可得∠3=∠CAD,从而得到∠4=∠CAD,再由∠1=∠2,可得∠BAF=∠CAD.从而得到∠4=∠BAF.即可求证.
    【详解】
    证明:∵AD∥BC(已知),
    ∴∠3=∠CAD(两直线平行,内错角相等).
    ∵∠3=∠4(已知),
    ∴∠4=∠CAD(等量代换).
    ∵∠1=∠2(已知),
    ∴∠1+∠CAF=∠2+∠CAF(等式的性质).
    即∠BAF=∠CAD.
    ∴∠4=∠BAF.(等量代换).
    ∴AB∥CD(同位角相等,两直线平行).
    【点睛】
    本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定定理是解题的关键.
    9、∠3=50°,∠2=65°.
    【分析】
    根据邻补角的性质、角平分线的定义进行解答即可.
    【详解】
    ∵∠FOC=90°,∠1=40°,
    ∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,
    ∴∠AOD=180°-∠3=180°-50°=130°,
    又∵OE平分∠AOD,
    ∴∠2=∠AOD=65°.
    【点睛】
    本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.
    10、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
    【分析】
    基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
    类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
    【详解】
    解:基础问题:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(平行于同一条直线的两条直线平行),
    ∵MN∥AB,
    ∴∠A=∠AGM(两直线平行,内错角相等),
    ∵MN∥CD,
    ∴∠D=∠DGM(两直线平行,内错角相等),
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
    类比探究:如图所示,过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD,
    ∵MN∥AB,
    ∴∠A=∠AGM,
    ∵MN∥CD,
    ∴∠D=∠DGM,
    ∴∠AGD=∠AGM-∠DGM=∠A-∠D.
    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
    又∵AB∥CD,
    ∴MN∥CD,PQ∥CD
    ∵MN∥AB,PQ∥AB,
    ∴∠BAG=∠AGM,∠BAH=∠AHP,
    ∵MN∥CD,PQ∥CD,
    ∴∠CDG=∠DGM,∠CDH=∠DHP,
    ∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
    ∴∠GDH=44°,∠DHP=22°,
    ∴∠CDG=66°,∠AHP=54°,
    ∴∠DGM=66°,∠BAH=54°,
    ∵AH平分∠BAG,
    ∴∠BAG=2∠BAH=108°,
    ∴∠AGM=108°,
    ∴∠AGD=∠AGM-∠DGM=42°.
    【点睛】
    本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题: 这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共31页。试卷主要包含了如图,不能推出a∥b的条件是,如图所示,下列说法错误的是,下列语句中等内容,欢迎下载使用。

    2021学年第十三章 相交线 平行线综合与测试课后作业题: 这是一份2021学年第十三章 相交线 平行线综合与测试课后作业题,共30页。试卷主要包含了下列说法中正确的是,下列说法,下列关于画图的语句正确的是.,如图所示,直线l1∥l2,点A等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题: 这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共31页。试卷主要包含了如图,在,下列命题中,为真命题的是,如图,,交于点,,,则的度数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map