![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线月考试题(含解析)第1页](http://www.enxinlong.com/img-preview/2/3/12709056/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线月考试题(含解析)第2页](http://www.enxinlong.com/img-preview/2/3/12709056/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年沪教版(上海)七年级数学第二学期第十三章相交线 平行线月考试题(含解析)第3页](http://www.enxinlong.com/img-preview/2/3/12709056/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共30页。试卷主要包含了如图,下列条件中能判断直线的是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠52、如图,将军要从村庄A去村外的河边饮马,有三条路AB、AC、AD可走,将军沿着AB路线到的河边,他这样做的道理是( )A.两点之间,线段最短B.两点之间,直线最短C.两点确定一条直线D.直线外一点与直线上各点连接的所有线段中,垂线段最短3、如图,直线b、c被直线a所截,则与是( )A.对顶角 B.同位角 C.内错角 D.同旁内角4、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°5、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的( )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°6、如图,下列条件中能判断直线的是( )A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠57、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )A.39° B.41° C.49° D.51°8、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )A.30° B.40° C.50° D.60°9、若直线a∥b,b∥c,则a∥c的依据是( ).A.平行的性质 B.等量代换C.平行于同一直线的两条直线平行. D.以上都不对10、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )A.77° B.64° C.26° D.87°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.2、下面两条平行线之间的三个图形,图____的面积最大,图______的面积最小.3、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.4、判断正误:(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角( )(2)如果两个角相等,那么这两个角是对顶角( )(3)有一条公共边的两个角是邻补角( )(4)如果两个角是邻补角,那么它们一定互补( )(5)有一条公共边和公共顶点,且互为补角的两个角是邻补角( )5、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.三、解答题(10小题,每小题5分,共计50分)1、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.将下列证明过程补充完整:证明:∵CE平分(已知),∴__________(角平分线的定义),∵(已知),∴___________(等量代换),∴(______________).(探究)已知:如图②,点E在AB上,且CE平分,.求证:.(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.2、补全下列推理过程:如图,,,,试说明.解:,(已知),(垂直的定义).( ). ( ).(已知), (等量代换).( ).3、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.(1)写出∠AOF的一个余角和一个补角.(2)若∠BOE=60°,求∠AOD的度数.(3)∠AOF与∠EOF相等吗?说明理由.4、直线、相交于点,平分,,,求与的度数.5、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数6、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点,分别在线段、上,,平分,平分交于点、.求证:.证明:平分(已知), .平分(已知), (角平分线的定义),(已知), . . .7、如图所示,点、分别在、上,、均与相交,,,求证:.8、如图,EF⊥BC,∠1=∠C,∠2+∠3=180°,试说明∠ADC=90°.请完善解答过程,并在括号内填写相应的理论依据.解:∵∠1=∠C,(已知)∴GD∥ .( )∴∠2=∠DAC.( )∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°.(等量代换)∴AD∥EF.( )∴∠ADC=∠ .( )∵EF⊥BC,(已知)∴∠EFC=90°.( )∴∠ADC=90°.(等量代换)9、如图,OA⊥OB于点O,∠AOD:∠BOD=7:2,点D、O、E在同一条直线上,OC平分∠BOE,求∠COD的度数.10、如图1所示,MN//PQ,∠ABC与MN,PQ分别交于A、C两点(1)若∠MAB=∠QCB=20°,则B的度数为 度.(2)在图1分别作∠NAB与∠PCB的平分线,且两条角平分线交于点F.①依题意在图1中补全图形;②若∠ABC=n°,求∠AFC的度数(用含有n的代数式表示);(3)如图2所示,直线AE,CD相交于D点,且满足∠BAM=m∠MAE, ∠BCP=m∠DCP,试探究∠CDA与∠ABC的数量关系 -参考答案-一、单选题1、D【分析】根据平行线的判定与性质、对顶角相等逐项判断即可.【详解】解:∵∠1=∠2,∴AB∥CD,故A正确,不符合题意;∴∠4=∠5,故C正确,不符合题意;∵∠EFB与∠3是对顶角,∴∠EFB=∠3,故B正确,无法判断∠3=∠5,故D错误,符合题意,故选:D.【点睛】本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.2、D【分析】根据垂线段最短即可完成.【详解】根据直线外一点与直线上各点连接的所有线段中,垂线段最短,可知D正确故选:D【点睛】本题考查了垂线的性质的简单应用,直线外一点与直线上各点连接的所有线段中,垂线段最短,掌握垂线段最短的性质并能运用于实际生活中是关键.3、B【分析】根据对顶角、同位角、内错角、同旁内角的特征去判断即可.【详解】∠1与∠2是同位角故选:B【点睛】本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.4、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.5、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,∴C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.6、C【分析】利用平行线的判定方法判断即可得到结果.【详解】解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.故选:C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.7、C【分析】由题意直接根据平行线的性质进行分析计算即可得出答案.【详解】解:如图,∵AB∥CD,∠C=131°,∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),∵AE∥CF,∴∠A=∠C=49°(两直线平行,同位角相等).故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.8、B【分析】由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.【详解】解:如图所示:∵∠1=50°,∠ACB=90°,∴∠BCD=180°﹣∠1﹣∠BCD=40°,∵a∥b,∴∠2=∠BCD=40°.故选:B.【点睛】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.9、C【分析】根据平行公理的推论进行判断即可.【详解】解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点睛】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.10、A【分析】本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.【详解】解:由图可知: AD∥BC∴∠AEG=∠BGD′=26°,即:∠GED=154°,由折叠可知: ∠α=∠FED,∴∠α==77°故选:A.【点睛】本题主要考察的是根据平行得性质进行角度的转化.二、填空题1、【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:,,是的平分线,,,故答案为:.【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.2、3 2 【分析】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【详解】解:图1、2、3的高相等,图2三角形的底是8,8÷2=4,图1梯形的上、下底之和除以2,即为(2+7)÷2=4.5;图3平行四边形的底为5,∵5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.故答案是:3,2.【点睛】本题主要考查平行线的性质及等积法,熟练掌握平行线间的距离相等及等积法是解题的关键.3、 【分析】根据角的表示和邻补角的性质计算即可;【详解】∠1还可以用表示;∵∠1=62°,,∴;故答案是:;.【点睛】本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.4、(1)×;(2)×;(3)×;(4)√;(5)×【分析】根据对顶角与邻补角的定义与性质分析判断即可求解.【详解】(1)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角,错误;(2)如果两个角相等,那么这两个角不一定是对顶角,错误;(3)有一条公共边的两个角不一定是邻补角,错误;(4)如果两个角是邻补角,那么它们一定互补,正确;(5)有一条公共边和公共顶点,且互为补角的两个角不一定是邻补角,错误;故答案为:(1)×;(2)×;(3)×;(4)√;(5)×.【点睛】本题主要考查了对顶角的与邻补角的性质,是基础题,熟记概念与性质是解题的关键,如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,叫做邻补角.5、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.三、解答题1、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.【详解】感知∵CE平分(已知),∴ECD(角平分线的定义),∵(已知),∴ECD(等量代换),∴(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分,∴,∵,∴,∵.应用∵BE平分∠DBC,∴,∵AE∥BC,∴∠CBE=∠E,∠BAE+∠ABC=180゜,∴∠E=∠ABE,∵,∴∠ABC=80゜∴∴【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.2、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行【分析】根据题意读懂推理过程中每一步的推理依据即可完成解答.【详解】,(已知),(垂直的定义),(同位角相等,两直线平行),(两直线平行,同位角相等),(已知),(等量代换),(内错角相等,两直线平行).故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.3、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析【分析】(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.【详解】解:(1)∵OC⊥CD,∴∠DOF=90°,∴∠AOF+∠AOD=90°,又∵∠BOC=∠AOD,∴∠AOF+∠BOC=90°,∵OC平分∠BOE,∴∠COE=∠BOC,∴∠AOF+∠COE=90°;∴∠AOF的余角是,∠COE,∠BOC,∠AOD;∵∠AOF+∠BOF=180°,∴∠AOF的补角是∠BOF;(2)∵OC平分∠BOE,∠BOE=60°,∴∠BOC=30°,又∵∠AOD=∠BOC,∴∠AOD=30°;(3)∠AOF=∠EOF,理由如下:由(1)可得∠AOD=∠BOC=∠COE,∵OF⊥OC,∴∠DOF=∠COF=90°,∴∠AOD+∠AOF=∠EOF+∠COE=90°,∴∠AOF=∠EOF.【点睛】本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.4、∠3=50°,∠2=65°.【分析】根据邻补角的性质、角平分线的定义进行解答即可.【详解】∵∠FOC=90°,∠1=40°,∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,∴∠AOD=180°-∠3=180°-50°=130°,又∵OE平分∠AOD,∴∠2=∠AOD=65°.【点睛】本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.5、55°【分析】由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.【详解】解:∵∠AOD=70°,∴∠COB=∠AOD=70°,∵OE平分∠BOC,∴∠EOB=∠EOC=35°,∵∠FOE=90°,∴∠AOF=180°-∠EOB-∠FOE=55°.【点睛】本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.6、角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:平分(已知),(角平分线的定义).平分(已知),(角平分线的定义),(已知),(两直线平行,同位角相等).(等量代换).(同位角相等,两直线平行).故答案为:角平分线的定义;;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.7、证明见解析【分析】由,证明,再证,最后根据对顶角相等,可得答案.【详解】证明:∵,∴,∴,又∵,∴,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.8、AC,同位角相等,两直线平行;两直线平行,内错角相等;同旁内角互补,两直线平行;EFC,两直线平行,同位角相等;垂直定义【分析】根据平行线的判定与性质以及垂直的定义即可完成填空.【详解】解:如图,∵∠1=∠C,(已知)∴,(同位角相等,两直线平行)∴∠2=∠DAC,(两直线平行,内错角相等)∵∠2+∠3=180°,(已知)∴∠DAC+∠3=180°,(等量代换)∴,(同旁内角互补,两直线平行)∴∠ADC=∠EFC,(两直线平行,同位角相等)∵EF⊥BC,(已知)∴∠EFC=90°,(垂直的定义)∴∠ADC=90°.(等量代换)【点睛】本题考查平行线的判定与性质,掌握平行线的判定定理以及性质是解题的关键.9、100°【分析】由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.【详解】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOD:∠BOD=7:2,∴∠BOD=∠AOB=20°,∴∠BOE=180°﹣∠BOD=160°.∵OC平分∠BOE,∴∠BOC=∠BOE=80°,∴∠COD=∠BOC+∠BOD=80°+20°=100°.【点睛】本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.10、(1)40;(2)①见解析;②;(3)m∠CDA+∠ABC=180°【分析】(1)作MN、PQ的平行线HG,根据两直线平行,内错角相等即可解答;(2)①根据题意作图即可,②过F作 ,根据两直线平行,同旁内角互补和内错角相等即可解答;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,知∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∠BCQ=180°−my°,根据(1)中所得结论知∠ABC=mx°+180°−my°,即y°−x°= ,由MNPQ知∠MAE=∠DGP=x°,根据∠CDA=∠DCP−∠DGC可得答案.【详解】解:(1)作 ,∵MN//PQ,∴,∴ ,∴ ;(2)①如图所示,②过点F作 ,∴ ,∴ ,∵ ,∴ ,∵∴ ,∴ ,∵ ,∴ ;(3)延长AE交PQ于点G,设∠MAE=x°,∠DCP=y°,则∠BAM=m∠MAE=mx°,∠BCP=m∠DCP=my°,∴∠BCQ=180°−my°,由(1)知,∠ABC=mx°+180°−my°,∴y°−x°=,∵MNPQ,∴∠MAE=∠DGP=x°,则∠CDA=∠DCP−∠DGC=y°−x°=,即m∠CDA+∠ABC=180°.【点睛】本题主要考查平行线的性质,解题的关键是掌握平行线的性质和判定等知识点.
相关试卷
这是一份初中数学第十三章 相交线 平行线综合与测试同步达标检测题,共29页。试卷主要包含了如图,直线AB,如图,∠1与∠2是同位角的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共29页。试卷主要包含了如图,能与构成同位角的有,下列说法,如图,下列条件中能判断直线的是等内容,欢迎下载使用。
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课堂检测,共29页。试卷主要包含了下列说法中正确的有等内容,欢迎下载使用。