![2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(精选含答案)第1页](http://www.enxinlong.com/img-preview/2/3/12709057/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(精选含答案)第2页](http://www.enxinlong.com/img-preview/2/3/12709057/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步测评试卷(精选含答案)第3页](http://www.enxinlong.com/img-preview/2/3/12709057/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共26页。试卷主要包含了如图,能判定AB∥CD的条件是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,,能表示点到直线(或线段)的距离的线段有( )A.五条 B.二条 C.三条 D.四条2、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°3、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )A.38° B.42° C.48° D.52°4、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )A.4个 B.3个 C.2个 D.1个5、如图,能判定AB∥CD的条件是( )A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠26、如图,直线l1l2,直线l3与l1、l2分别相交于点A,C,BC⊥l3交l1于点B,若∠2=30°,则∠1的度数为( )A.30° B.40° C.50° D.60°7、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )A.45° B.25° C.15° D.20°8、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )A.60° B.90° C.120° D.150°9、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )A.100° B.140° C.160° D.105°10、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )A.55° B.125° C.115° D.65°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40,则∠EOF=_______.2、如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系______ .3、如图,从人行横道线上的点P处过马路,下列线路中最短的是________.4、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.5、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.三、解答题(10小题,每小题5分,共计50分)1、作图并计算:如图,点O在直线上.(1)画出的平分线(不必写作法);(2)在(1)的前提下,若,求的度数.2、如图所示,M、N是直线AB上两点,∠1=∠2,问∠1与∠2,∠3与∠4是对顶角吗? ∠1与∠5,∠3与∠6是邻补角吗?3、如图,已知点O是直线AB上一点,射线OM平分.(1)若,则______度;(2)若,求的度数.4、阅读下面的推理过程,将空白部分补充完整.已知:如图,在△ABC中,FGCD,∠1 = ∠3.求证:∠B + ∠BDE= 180°.解:因为FGCD(已知),所以∠1= .又因为∠1 = ∠3 (已知),所以∠2 = (等量代换).所以BC ( ),所以∠B + ∠BDE = 180°(___________________).5、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.6、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C画AD的平行线CE;(2)过点B画CD的垂线,垂足为F.7、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.8、根据解答过程填空(写出推理理由或数学式):如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.证明:∵∠DAF=∠F(已知).∴AD∥BF( ),∴∠D=∠DCF( ).∵∠B=∠D(已知),∴( )=∠DCF(等量代换),∴AB∥DC( ).9、如图,AB∥DG,∠1+∠2=180°.(1)试说明:AD∥EF;(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.10、如图,在ABC中,DEAC,DFAB.(1)判断∠A与∠EDF之间的大小关系,并说明理由.(2)求∠A+∠B+∠C的度数. -参考答案-一、单选题1、A【分析】直接利用点到直线的距离的定义分析得出答案.【详解】解:线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,线段的长是点到的距离,故图中能表示点到直线距离的线段共有五条.故选:A.【点睛】此题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.2、B【分析】根据平行线的判定定理分析即可.【详解】A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;故选:B.【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.3、A【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.4、B【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF,∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE,∴当∠AOF=50°时,∠DOE=50°;故①正确;∵OB平分∠DOG,∴∠BOD=∠BOG,∴∠BOD=∠BOG=∠EOF=∠AOC,故④正确;∵,∴∠BOD=180°-150°=30°,∴故③正确;若为的平分线,则∠DOE=∠DOG,∴∠BOG+∠BOD=90°-∠EOE,∴∠EOF=30°,而无法确定,∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.5、D【分析】根据平行线的判定定理,找出正确选项即可.【详解】根据内错角相等,两直线平行,∵∠A=∠2,∴AB∥CD,故选:D.【点睛】本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.6、D【分析】根据平行线的性质和垂直的定义解答即可.【详解】解:∵BC⊥l3交l1于点B,∴∠ACB=90°,∵∠2=30°,∴∠CAB=180°−90°−30°=60°,∵l1l2,∴∠1=∠CAB=60°.故选:D.【点睛】此题考查平行线的性质,关键是根据平行线的性质解答.7、C【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°-30°=15°.故选:C.【点睛】此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.8、C【分析】先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.【详解】解:∵AB∥CD,∴∠1=∠CEF,又∵∠2+∠CEF=180°,∴∠2+∠1=180°,∵∠2=2∠1,∴3∠1=180°,∴∠1=60°,∴∠2=120°,故选C.【点睛】本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.9、B【分析】根据方位角的含义先求解 再利用角的和差关系可得答案.【详解】解:如图,标注字母, 射线AB的方向是北偏东70°,射线AC的方向是南偏西30°, 而 故选B【点睛】本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.10、B【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.二、填空题1、130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.2、平行【分析】过点作,根据两直线平行,同旁内角互补,从而出,即可得出结果.【详解】解:过点作,∴,∵∠BAC+∠ACE+∠CEF=360°,∴,∴,∴,故答案为:平行.【点睛】本题考查了平行线的判定与性质以及平行线的推论,根据题意作出合理的辅助线是解本题的关键.3、PC【分析】根据点到直线的距离,垂线段最短进行求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴从人行横道线上的点P处过马路,线路最短的是PC,故答案为:PC.【点睛】本题主要考查了点到直线的距离,解题的关键在于能够熟练掌握点到直线的距离垂线段最短.4、【分析】先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.【详解】解:,,是的平分线,,,故答案为:.【点睛】本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.5、6 12 6 【分析】根据同位角、同旁内角和内错角的定义判断即可;【详解】如图所示:同位角有:与;与;与,与;与;与;与;与;与;与;与;和,共有12对;同旁内角有:与;与;与;与;与;与,共有6对;内错角有:与;与;与;与;与;与,共有6对;故答案是:6;12;6.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.三、解答题1、(1)见解析;(2)150°【分析】(1)根据画角平分线的方法,画出角平分线即可;(2)先求出的度数,然后由角平分线的定义,即可求出答案.【详解】解:(1)如图,OD即为平分线(2)解:∵,∴,,∴;【点睛】本题考查了角平分线的定义,画角平分线,解题的关键是掌握角平分线的定义进行解题.2、∠1和∠2,∠3和∠4都不是对顶角,∠1与∠5,∠3与∠6也都不是邻补角【分析】根据对顶角和邻补角的定义求解即可.【详解】解:根据对顶角的定义可得:∠1和∠2,∠3和∠4都不是对顶角;根据邻补角的定义可得,∠1与∠5,∠3与∠6也都不是邻补角.【点睛】此题考查了邻补角和对顶角的定义,解题的关键是掌握邻补角和对顶角的有关定义,牢记两条直线相交,才能产生对顶角或邻补角.两个角有公共点顶点,且角的一边重合、另一条边互为反向延长线,这样的两个角叫做邻补角,对顶角是指角的顶点重合,角的两条边分别互为反向延长线的角。3、(1),(2)【分析】(1)根据平角的定义可求;(2)根据和,代入解方程求出即可.【详解】解:(1)∵,∴,故答案为:.(2)∵OM平分,∴,∵,∴,∴,∴.【点睛】本题考查了角平分线的有关计算,解题关键是准确识图,弄清角之间的数量关系.4、∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【分析】首先根据两直线平行,同位角相等可得到,然后根据角度之间的等量代换可得到,然后根据内错角相等,两直线平行可得到,最后根据两直线平行,同旁内角互补可得到∠B + ∠BDE = 180°.【详解】解:因为FGCD(已知),所以∠1=∠2.又因为∠1 = ∠3 (已知),所以∠2 =∠3(等量代换).所以(内错角相等,两直线平行),所以∠B + ∠BDE = 180°(两直线平行,同旁内角互补).故答案为:∠2;∠3;DE;内错角相等,两直线平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,解决本题的关键是准确区分平行线的判定与性质,并能熟练运用.5、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.【分析】三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.【详解】(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.以第一个命题为例证明如下:∵AB∥DE,∴∠B=∠DOC.∵BC∥EF,∴∠DOC=∠E,∴∠B=∠E.【点睛】本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.6、(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.【详解】解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,如图,直线CE即为所求作.(2)根据题意得:CD是长为6,宽为3的长方形的对角线,所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,如图,直线BF即为所求作.【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.7、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.8、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【分析】根据平行线的性质与判定条件完成证明过程即可.【详解】证明:∵∠DAF=∠F(已知).∴AD∥BF(内错角相等,两直线平行),∴∠D=∠DCF(两直线平行,内错角相等).∵∠B=∠D(已知),∴∠B=∠DCF(等量代换),∴AB∥DC(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.【点睛】本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.9、(1)见解析;(2)∠B=38°.【分析】(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.【详解】(1)∵AB∥DG,∴∠BAD=∠1,∵∠1+∠2=180°,∴∠BAD+∠2=180°.∵AD∥EF . (2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG是∠ADC的平分线,∴∠CDG=∠1=38°,∵AB∥DG,∴∠B=∠CDG=38°.【点睛】本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.10、(1)两角相等,见解析;(2)180°【分析】(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:∵DE∥AC,∴∠A=∠BED(两直线平行,同位角相等).∵DF∥AB,∴∠EDF=∠BED(两直线平行,内错角相等),∴∠A=∠EDF(等量代换).(2)∵DE∥AC,∴∠C=∠EDB(两直线平行,同位角相等).∵DF∥AB,∴∠B=∠FDC(两直线平行,同位角相等).∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
相关试卷
这是一份初中数学第十三章 相交线 平行线综合与测试习题,共30页。试卷主要包含了直线,下列命题中,为真命题的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练,共28页。试卷主要包含了如图,直线AB∥CD,直线AB,下列说法,直线等内容,欢迎下载使用。
这是一份初中第十三章 相交线 平行线综合与测试当堂检测题,共33页。