数学第十三章 相交线 平行线综合与测试课后复习题
展开
这是一份数学第十三章 相交线 平行线综合与测试课后复习题,共32页。试卷主要包含了如图所示,下列说法错误的是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
2、如图,射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,则∠BAC的度数是( )
A.100° B.140° C.160° D.105°
3、下列说法中正确的个数是( )
(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
A.1 B.2 C.3 D.4
4、∠A两边分别垂直于∠B的两边,∠A与∠B的关系是( )
A.相等 B.互补 C.相等或互补 D.不能确定
5、如图所示,直线l1l2,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=52°,那么∠2=( )
A.138° B.128° C.52° D.152°
6、如图,AB∥CD,AE∥CF,∠C=131°,则∠A=( )
A.39° B.41° C.49° D.51°
7、若∠1与∠2是内错角,则它们之间的关系是 ( )
A.∠1=∠2 B.∠1>∠2 C.∠1<∠2 D.∠1=∠2或∠1>∠2或∠1<∠2
8、如图所示,下列说法错误的是( )
A.∠1和∠3是同位角 B.∠1和∠5是同位角
C.∠1和∠2是同旁内角 D.∠5和∠6是内错角
9、如图,下列给定的条件中,不能判定的是( )
A. B. C. D.
10、下列命题正确的是( )
(1)两条直线被第三条直线所截,同位角相等;
(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;
(3)平移前后连接各组对应点的线段平行且相等;
(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;
(5)在同一平面内,三条直线的交点个数有三种情况.
A.0个 B.1个 C.2个 D.3个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线AD⊥BD,垂足为点D,则点B到AC的距离是线段 _____的长度.
2、如图,OA⊥OB,若∠1=55°16′,则∠2的度数是 _____.
3、在体育课上某同学跳远的情况如图所示,直线表示起跳线,经测量,PB=3.3米,PC=3.1米,PD=3.5米,则该同学的实际立定跳远成绩是___________米;
4、如图,,,,则∠CAD的度数为____________.
5、如图,已知ABCD,BE平分∠ABC,DE平分∠ADC,若∠ABC =m°,∠ADC =n°,则∠E=_________°.
三、解答题(10小题,每小题5分,共计50分)
1、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).
2、如图,已知ABCD,BE平分∠ABC,∠CDE = 150°,求∠C的度数.
3、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.
将下列证明过程补充完整:
证明:∵CE平分(已知),
∴__________(角平分线的定义),
∵(已知),
∴___________(等量代换),
∴(______________).
(探究)已知:如图②,点E在AB上,且CE平分,.求证:.
(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.
4、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
(2)当点E落在直线AC上时,直接写出∠BAD的度数;
(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.
5、直线AB//CD,直线EF分别交AB、CD于点M、N,NP平分∠MND.
(1)如图1,若MR平分∠EMB,则MR与NP的位置关系是 .
(2)如图2,若MR平分∠AMN,则MR与NP有怎样的位置关系?请说明理由.
(3)如图3,若MR平分∠BMN,则MR与NP有怎样的位置关系?请说明理由.
6、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
7、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)
(1)当t=3时,求∠AOB的度数;
(2)在运动过程中,当∠AOB达到60°时,求t的值;
(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.
8、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
(1)写出∠AOF的一个余角和一个补角.
(2)若∠BOE=60°,求∠AOD的度数.
(3)∠AOF与∠EOF相等吗?说明理由.
9、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOE=90°,若∠AOD=70°,求∠AOF度数
10、如图,直线AB,CD,EF相交于点O,OG⊥CD.
(1)已知∠AOC=38°12',求∠BOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠EOB的平分线吗?说明理由.
-参考答案-
一、单选题
1、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
2、B
【分析】
根据方位角的含义先求解 再利用角的和差关系可得答案.
【详解】
解:如图,标注字母,
射线AB的方向是北偏东70°,射线AC的方向是南偏西30°,
而
故选B
【点睛】
本题考查的是角的和差关系,垂直的定义,方位角的含义,掌握“角的和差与方位角的含义”是解本题的关键.
3、C
【分析】
根据平行线的性质分析判断即可;
【详解】
在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
综上所述,正确的是(1)(3)(4);
故选C.
【点睛】
本题主要考查了平行线的性质,准确分析判断是解题的关键.
4、C
【分析】
分别画出∠A两边分别垂直于∠B的两边,然后利用同角的余角相等进行求解即可.
【详解】
解:如图所示:BE⊥AE,BC⊥AC,
∴∠BCF=∠AEF=90°,
∴∠A+∠AFE=90°,∠B+∠BFC=90°,
∴∠A=∠B
如图所示:BD⊥AD,BC⊥AC,
∴∠ADE=∠BCE=90°,
∴∠A+∠BEC=90°,∠CBE+∠BEC=90°,
∴∠A=∠CBE,
∵∠CBE+∠DBC=180°,
∴∠A+∠DBC=180°,
综上所述,∠A与∠B的关系是相等或互补,
故选C.
【点睛】
本题主要考查了垂直的定义,同角的余角相等,以及等角的补角之间的关系,解题的关键在于能够根据题意画出图形进行求解.
5、B
【分析】
根据两直线平行同位角相等,得出∠1=∠3=52°.再由∠2与∠3是邻补角,得∠2=180°﹣∠3=128°.
【详解】
解:如图.
∵l1//l2,
∴∠1=∠3=52°.
∵∠2与∠3是邻补角,
∴∠2=180°﹣∠3=180°﹣52°=128°.
故选:B.
【点睛】
本题主要考查了平行线的性质、邻补角的定义,熟练掌握平行线的性质、邻补角的定义是解决本题的关键.
6、C
【分析】
由题意直接根据平行线的性质进行分析计算即可得出答案.
【详解】
解:如图,
∵AB∥CD,∠C=131°,
∴∠1 =180°-∠C=49°(两直线平行,同旁内角互补),
∵AE∥CF,
∴∠A=∠C=49°(两直线平行,同位角相等).
故选:C.
【点睛】
本题主要考查平行线的性质,熟练掌握平行线的性质即两直线平行,同旁内角互补和两直线平行,同位角相等以及两直线平行,内错角相等是解答此题的关键.
7、D
【分析】
根据内错角角的定义和平行线的性质判断即可.
【详解】
解:∵只有两直线平行时,内错角才可能相等,
∴根据已知∠1与∠2是内错角可以得出∠1=∠2或∠1>∠2或∠1<∠2,
三种情况都有可能,
故选D.
【点睛】
本题考查了内错角和平行线的性质,能理解内错角的定义是解此题的关键.
8、B
【分析】
根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.
【详解】
解:A、∠1和∠3是同位角,故此选项不符合题意;
B、∠1和∠5不存在直接联系,故此选项符合题意;
C、∠1和∠2是同旁内角,故此选项不符合题意;
D、∠1和∠6是内错角,故此选项不符合题意;
故选B.
【点睛】
本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键.
9、A
【分析】
根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.
【详解】
解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;
B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;
C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;
D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;
故选A.
【点睛】
本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.
10、B
【分析】
根据平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系逐个判断即可得.
【详解】
解:(1)两条平行线被第三条直线所截,同位角相等;则原命题错误;
(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;则原命题正确;
(3)平移前后连接各组对应点的线段平行(或在同一条直线上)且相等;则原命题错误;
(4)从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离;则原命题错误;
(5)在同一平面内,三条直线的交点个数可能为0个或1个或2个或3个,共有四种情况;则原命题错误;
综上,命题正确的是1个,
故选:B.
【点睛】
本题考查了平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系,熟练掌握各定义和性质是解题关键.
二、填空题
1、BD
【分析】
根据点到直线的距离判断即可;
【详解】
点的直线的距离为垂线段,因为AD⊥BD,所以点B到AC的距离是线段BD的长度;
故答案是:BD.
【点睛】
本题主要考查了点到直线的距离,准确分析判断是解题的关键.
2、
【分析】
直接利用垂线的定义得出∠1+∠2=90°,再求∠1的余角∠2,结合度分秒转化得出答案.
【详解】
解:∵OA⊥OB,
∴∠AOB=90°,
∴∠1+∠2=90°,
∵∠1=55°16′,
∴∠2=90°﹣55°16′=34°44′.
故答案为:34°44′.
【点睛】
本题考查垂直定义,求一个角的余角,度分秒互化,掌握垂直定义,求一个角的余角,度分秒互化是解题关键.
3、3.1
【分析】
根据点到直线,垂线段最短,即可求解.
【详解】
解:根据题意得:该同学的实际立定跳远成绩是PC=3.1米.
故答案为:3.1
【点睛】
本题主要考查了点与直线的位置关系,熟练掌握点到直线,垂线段最短是解题的关键.
4、
【分析】
根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.
【详解】
解:∵∥,,
∴,
∴
故答案为:
【点睛】
本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.
5、
【分析】
作EF∥AB,证明AB∥ EF∥CD,进而得到∠BED=∠ABE+∠CDE,根据角平分线定义得到,即可求出.
【详解】
解:如图,作EF∥AB,
∵AB∥CD,
∴AB∥ EF∥CD,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∴∠BED=∠BEF+∠DEF=∠ABE+∠CDE,
∵BE平分∠ABC,DE平分∠ADC,
∴,
∴ .
故答案为:
【点睛】
本题考查了平行线性质,角平分线的定义,熟知角平分线的性质和平行公理的推论,根据题意添加辅助线是解题关键.
三、解答题
1、(1);(2);(3)
【分析】
(1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
【详解】
解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
∴,,
∴;
(2)根据题意,则
,,
∵,
∴,
∴,
∴;
(3)根据题意,
,,
∵,
∴,
∴,
∴;
【点睛】
本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
2、∠C的度数为120°
【分析】
首先由∠CDE=150°和平角的概念得到∠CDB=30°;然后根据两直线平行,内错角相等得到∠ABD=∠CDB=30°,进而根据角平分线的定义求出∠ABC=60°,最后根据两直线平行,同旁内角互补即可求出∠C的度数.
【详解】
解:∵∠CDE=150°,
∴∠CDB=180°-∠CDE=30°,
又∵ABCD,
∴∠ABD=∠CDB=30°,
∵BE平分∠ABC,
∴∠ABC=2∠ABD=60°,
∵ABCD,
∴∠C=180°-∠ABC=120°.
【点睛】
本题考查平行线基本性质与邻补角关系,基础知识牢固是本题解题关键.
3、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°
【分析】
感知:读懂每一步证明过程及证明的依据,即可完成解答;
探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;
应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.
【详解】
感知
∵CE平分(已知),
∴ECD(角平分线的定义),
∵(已知),
∴ECD(等量代换),
∴(内错角相等,两直线平行).
故答案为:ECD;ECD;内错角相等,两直线平行
探究
∵CE平分,
∴,
∵,
∴,
∵.
应用
∵BE平分∠DBC,
∴,
∵AE∥BC,
∴∠CBE=∠E,∠BAE+∠ABC=180゜,
∴∠E=∠ABE,
∵,
∴∠ABC=80゜
∴
∴
【点睛】
本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.
4、(1);(2);(3)的值为:或.
【分析】
(1)先求解 再利用角的和差关系可得答案;
(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
【详解】
解:(1) ∠BAD=18°,∠EAD=∠BAD,
(2)当落在的下方时,如图,
当落在的上方时,如图,
而
(3)当落在的内部时,如图,
∠CAE:∠BAD=7:4,
当落在的外部时,如图,
∠CAE:∠BAD=7:4,
设则
解得:
综上:的值为:或.
【点睛】
本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
5、(1)MR//NP;(2)MR//NP,理由见解析;(3)MR⊥NP,理由见解析
【分析】
(1)根据AB∥CD,得出∠EMB=∠END,根据MR平分∠EMB,NP平分∠EBD,得出,可证∠EMR=∠ENP即可;
(2)根据AB∥CD,可得∠AMN=∠END,根据MR平分∠AMN,NP平分∠EBD,可得,得出∠RMN=∠ENP即可;
(3设MR,NP交于点Q,过点Q作QG∥AB,根据AB∥CD,可得∠BMN+∠END=180°,根据MR平分∠BMN,NP平分∠EBD,得出,计算两角和∠BMR+∠NPD=,根据GQ∥AB,AB∥CD,得出∠BMQ=∠GQM,∠GQN=∠PND,得出∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°即可.
【详解】
证明:(1)结论为MR∥NP.
如题图1∵AB∥CD,
∴∠EMB=∠END,
∵MR平分∠EMB,NP平分∠EBD,
∴,
∴∠EMR=∠ENP,
∴MR∥BP;
故答案为MR∥BP;
(2)结论为:MR∥NP.
如题图2,∵AB∥CD,
∴∠AMN=∠END,
∵MR平分∠AMN,NP平分∠EBD,
∴
∴∠RMN=∠ENP,
∴MR∥NP;
(3)结论为:MR⊥NP.
如图,设MR,NP交于点Q,过点Q作QG∥AB,
∵AB∥CD,
∴∠BMN+∠END=180°,
∵MR平分∠BMN,NP平分∠EBD,
∴,
∴∠BMR+∠NPD=,
∵GQ∥AB,AB∥CD,
∴GQ∥CD∥AB,
∴∠BMQ=∠GQM,∠GQN=∠PND,
∴∠MQN=∠GQM+∠GQN=∠BMQ+∠PND=90°,
∴MR⊥NP,
【点睛】
本题考查平行线性质与判定,角平分线定义,角的和差,掌握平行线性质与判定,角平分线定义,角的和差是解题关键.
6、(1)120;150;(2)30°;(3)30,=;(4)150;30.
【分析】
(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
【详解】
解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
故答案为120;150;
(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
由(1)得∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案为30°;
(3)∵∠AOD=∠BON(对顶角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
故答案为30,=;
(4)∵MN⊥AB,
∴∠AON与∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案为150;30.
【点睛】
本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
7、(1)150°;(2)12或24;(3)存在,9秒、27秒
【分析】
(1)根据∠AOB=180°−∠AOM−∠BON计算即可.
(2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.
(3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.
【详解】
解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.
(2)当重合时,
解得:
当0≤t≤18时:
4t+6t=120
解得:
当18≤t≤30时:则
4t+6t=180+60,
解得 t=24,
答:当∠AOB达到60°时,t的值为6或24秒.
(3) 当0≤t≤18时,由
180−4t−6t=90,
解得t=9,
当18≤t≤30时,同理可得:
4t+6t=180+90
解得t=27.
所以大于的答案不予讨论,
答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.
【点睛】
本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
8、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
【分析】
(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
【详解】
解:(1)∵OC⊥CD,
∴∠DOF=90°,
∴∠AOF+∠AOD=90°,
又∵∠BOC=∠AOD,
∴∠AOF+∠BOC=90°,
∵OC平分∠BOE,
∴∠COE=∠BOC,
∴∠AOF+∠COE=90°;
∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
∵∠AOF+∠BOF=180°,
∴∠AOF的补角是∠BOF;
(2)∵OC平分∠BOE,∠BOE=60°,
∴∠BOC=30°,
又∵∠AOD=∠BOC,
∴∠AOD=30°;
(3)∠AOF=∠EOF,理由如下:
由(1)可得∠AOD=∠BOC=∠COE,
∵OF⊥OC,
∴∠DOF=∠COF=90°,
∴∠AOD+∠AOF=∠EOF+∠COE=90°,
∴∠AOF=∠EOF.
【点睛】
本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
9、55°
【分析】
由题意利用对顶角可得∠COB=∠AOD=70°,再根据角平分线性质可得∠EOB=∠EOC=35°,进而利用邻补角的性质得出∠AOF=180°-∠EOB-∠FOE即可求得答案.
【详解】
解:∵∠AOD=70°,
∴∠COB=∠AOD=70°,
∵OE平分∠BOC,
∴∠EOB=∠EOC=35°,
∵∠FOE=90°,
∴∠AOF=180°-∠EOB-∠FOE=55°.
【点睛】
本题考查角的运算,熟练掌握对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.
10、(1)51°48′;(2)OG是∠EOB的平分线,理由见解析
【分析】
(1)根据互为余角的意义和对顶角的性质,可得∠AOC=∠BOD=38°12′,进而求出∠BOG;
(2)求出∠EOG=∠BOG即可.
【详解】
解:(1)∵OG⊥CD.
∴∠GOC=∠GOD=90°,
∵∠AOC=∠BOD=38°12′,
∴∠BOG=90°﹣38°12′=51°48′,
(2)OG是∠EOB的平分线,
理由:
∵OC是∠AOE的平分线,
∴∠AOC=∠COE=∠DOF=∠BOD,
∵∠COE+∠EOG=∠BOG+∠BOD=90°,
∴∠EOG=∠BOG,
即:OG平分∠BOE.
【点睛】
本题主要考查角平分线的定义及余角,熟练掌握角平分线的定义及余角是解题的关键.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后测评,共29页。试卷主要包含了下列说法,在下列各题中,属于尺规作图的是,下列说法中正确的有个等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共27页。试卷主要包含了下列说法中,正确的是,如图,直线b等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共30页。试卷主要包含了下列语句中等内容,欢迎下载使用。