年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试卷(精选含详解)

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试卷(精选含详解)第1页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试卷(精选含详解)第2页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线必考点解析试卷(精选含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后复习题,共29页。试卷主要包含了下列说法,如图,,交于点,,,则的度数是等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,ABEF,则∠A,∠C,∠D,∠E满足的数量关系是(    A.∠A+∠C+∠D+∠E=360° B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180° D.∠E﹣∠C+∠D﹣∠A=90°2、如图,直线AB经过点O,射线OA是北偏东40°方向,则射线OB的方位角是(    A.南偏西50° B.南偏西40° C.北偏西50° D.北偏西40°3、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )A.164°12' B.136°12' C.143°88' D.143°48'4、如图,将一张长方形纸带沿EF折叠,点CD的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为(  )A.2α B.90°+α C.180°﹣α D.180°﹣2α5、如图,有ABC三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°6、下列说法:①和为180°且有一条公共边的两个角是邻补角;②过一点有且只有一条直线与已知直线垂直;③同位角相等;④经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有(    A.0个 B.1个 C.2个 D.3个7、如图,于点,则的度数是(    A.34° B.66° C.56° D.46°8、如图,下列给定的条件中,不能判定的是(  )A. B. C. D.9、如图,已知直线ADBCBE平分∠ABC交直线DA于点E,若∠DAB=54°,则∠E等于(    A.25° B.27° C.29° D.45°10、在如图中,∠1和∠2不是同位角的是(  )A. B.C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,点ABCD在同一条直线上.在线段PAPBPCPD中,最短的线段是________,理由是________.2、已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是_____.3、如图,直线AB和直线CD相交于点O,且∠AOC=2∠BOC,则∠AOD的度数为____________.4、如图,将一副三角板按如图所示的方式摆放,ACDFBCEF相交于点G,则∠CGF度数为 _____度.5、两条射线或线段平行,是指_______________________.三、解答题(10小题,每小题5分,共计50分)1、如图,在ABC中,DEACDFAB(1)判断∠A与∠EDF之间的大小关系,并说明理由.(2)求∠A+∠B+∠C的度数.2、如图,OBODOC平分∠AOD,∠BOC=35°,求∠AOD和∠AOB的大小.3、如图,为解决ABCD四个村庄的用水问题.政府准备投资修建一个蓄水池.(1)若使蓄水池与四个村庄的距离的和最小,请画出蓄水池P的位置;(2)为把河道l中的水引入蓄水池P中,需要再修建一条引水渠.若使引水渠的长度最小,请画出引水渠PQ的修建线路.4、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.5、如图,∠ENC+∠CMG=180°,ABCD(1)求证:∠2=∠3.(2)若∠A=∠1+70°,∠ACB=42°,则∠B的大小为______.6、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为   °,∠CON的度数为   °;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为   °;(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为   °;∠DOC与∠BON的数量关系是∠DOC    BON(填“>”、“=”或“<”);(4)如图4,MNABON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为     °;∠AOM﹣∠CON的度数为   °7、如图,在由相同小正方形组成的网格中,点ABCO都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.(1)用无刻度的直尺作图:①过点AADOC②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC(2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.8、如图,直线CDEF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.(1)如图1,若,试说明(2)如图2,若OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.,当t为何值时,直线OE平分②当,三角尺AOB旋转到三角POQAB分别对应PQ)的位置,若OM平分,求的值.9、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A             ).AB             ).又∵∠1=∠2(已知),ABCD       ).EF              ).∴∠FDG=∠EFD       ).10、在三角形ABC中,DFBC上一点,HEAC上,(1)如图1,求证:(2)如图2,若,请直接写出图中与互余的角,不需要证明. -参考答案-一、单选题1、C【分析】如图,过点CCGAB,过点DDHEF,根据平行线的性质可得∠A=∠ACG,∠EDH=180°﹣∠E,根据ABEF可得CGDH,根据平行线的性质可得∠CDH=∠DCG,进而根据角的和差关系即可得答案.【详解】如图,过点CCGAB,过点DDHEF∴∠A=∠ACG,∠EDH=180°﹣∠EABEFCGDH∴∠CDH=∠DCG∴∠ACD=∠ACG+∠CDH=∠A+∠CDE﹣(180°﹣∠E),∴∠A﹣∠ACD+∠CDE+∠E=180°.故选:C.【点睛】本题考查了平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质,正确作出辅助线是解题关键.2、B【分析】由对顶角可知∠1=40°,故可知射线OB的方位角;【详解】解:由对顶角可知,∠1=40°所以射线OB的方位角是南偏西40°故答案为B【点睛】本题考查了方向角.解题的关键是掌握方向角的定义,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.3、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.4、D【分析】由平行线的性质得,由折叠的性质得,计算即可得出答案.【详解】∵四边形ABCD是矩形,∵长方形纸带沿EF折叠,故选:D.【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.5、D【分析】根据方向角的概念,和平行线的性质求解.【详解】解:如图:AFDE∴∠ABE=∠FAB=43°,ABBC∴∠ABC=90°,∴∠CBD=180°﹣90°﹣43°=47°,C地在B地的北偏西47°的方向上.故选:D.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.6、B【分析】根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.【详解】解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;③如图直线ab被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;其中正确的有④一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.7、C【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.8、A【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DEACAB所截得到的同位角,可得到DEAC,而不是ABDF,故符合题意;B选项:当∠A=∠3时,可知是ABDFAC所截得到的同位角,可得ABDF,故不符合题意;C选项:当∠1=∠4时,可知是ABDFDE所截得到的内错角,可得ABDF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得ABDF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.9、B【分析】根据两直线平行,内错角相等可求∠ABC=54°,再根据角平分线的性质可求∠EBC=27°,再根据两直线平行,内错角相等可求∠E【详解】解:∵ADBC∴∠ABC=∠DAB=54°,∠EBC=∠EBE平分∠ABC∴∠EBC=ABC=27°,∴∠E=27°.故选:B.【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC=27°.10、D【分析】同位角的定义:两条直线ab被第三条直线c所截,在截线c的同侧,被截两直线ab的同一方向的两个角,我们把这样的两个角称为同位角,依此即可求解.【详解】解:A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】本题题考查三线八角中的同位角识别,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.二、填空题1、PC    垂线段最短    【分析】根据垂线段最短求解即可.【详解】解:∵PAPBPD都不垂直于AD∴由垂线段最短可得,最短的线段是PC理由是:垂线段最短.故答案为:PC;垂线段最短.【点睛】此题考查了垂线段最短的性质,解题的关键是熟练掌握垂线段最短.2、40°【分析】由两角的两边互相平行可得这两个角相等或互补,再由其中一个角为 ,即可得出答案.【详解】解:因为两个角的两边互相平行,所以这两个角相等或互补,若这两个角相等,因为其中一个角为,所以另一个角的度数为若这两个角互补,则另一个角的度数为故答案为【点睛】此题考查了平行线的性质和补角的定义,属于基本题型,正确分类,熟练掌握平行线的性质是关键.3、【分析】根据可得,再根据对顶角相等即可求出的度数.【详解】解:∵故答案为:【点睛】本题主要考查了邻补角、对顶角的相关知识,熟练运用邻补角、对顶角的相关知识是解答此题的关键.4、30【分析】先证明再证明再利用平行线的性质与对顶角的性质可得答案.【详解】解:如图,记交于点 由题意得: 故答案为:【点睛】本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.5、射线或线段所在的直线平行【分析】根据直线、线段、射线的关系以及平行线的知识进行解答.【详解】解:两条射线或线段平行,是指:射线或线段所在的直线平行,故答案为:射线或线段所在的直线平行.【点睛】本题考查了直线、线段、射线以及平行线的问题,本题是对基础知识的考查,记忆时一定要注意公理或定义、性质成立的前提条件.三、解答题1、(1)两角相等,见解析;(2)180°【分析】(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:DEAC∴∠A=∠BED(两直线平行,同位角相等).DFAB∴∠EDF=∠BED(两直线平行,内错角相等),∴∠A=∠EDF(等量代换).(2)∵DEAC∴∠C=∠EDB(两直线平行,同位角相等).DFAB∴∠B=∠FDC(两直线平行,同位角相等).∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.2、∠AOD=110°,∠AOB=20°【分析】根据OBOD,先可求出∠COD,再根据角平分线的性质求出∠AOD,利用角度的关系即可求出∠AOB【详解】解:∵OBOD∴∠BOD=90°∵∠BOC=35°,∴∠COD=90°-∠BOC=55°OC平分∠AOD∴∠AOD=2∠COD=110°∴∠AOB=∠AOD-∠BOD=110°-90°=20°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质、垂直的定义.3、(1)见解析;(2)见解析.【分析】(1)利用两点之间距离线段最短,进而得出答案;(2)利用点到直线的距离垂线段最短,即可得出答案.【详解】解答:解:(1)如图所示:由两点之间,线段最短,连接ACBD交点即为P点,(2)如图所示:由垂线段最短,过PPQ⊥河道l,垂足即为Q点.【点睛】本题主要考查了应用设计与作图,正确掌握点与点以及点到直线的距离定义是解题关键.4、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,AOD=BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.5、(1)见解析;(2)34°【分析】(1)根据对顶角相等可得出∠ENC+∠FMN=180°,根据平行线的判定可得FGED,由平行线的性质可得∠2=∠D,∠3=∠D,等量代换即可得出结论;(2)由平行线的性质∠A+∠ACD=180°,结合已知可得∠1+70°+∠1+42°=180°,可求得∠1=34°,根据平行线的性质即可求解.【详解】(1)证明:∵∠ENC+∠CMG=180°,∠CMG=∠FMN∴∠ENC+∠FMN=180°,FGED∴∠2=∠DABCD∴∠3=∠D∴∠2=∠3;(2)解:∵ABCD∴∠A+∠ACD=180°,∵∠A=∠1+70°,∠ACB=42°,∴∠1+70°+∠1+42°=180°,∴∠1=34°,ABCD∴∠B=∠1=34°.故答案为:34°.【点睛】本题主要考查了平行线的性质与判定定理,解答此题的关键是注意平行线的性质和判定定理的综合运用.6、(1)120;150;(2)30°;(3)30,=;(4)150;30.【分析】(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.【详解】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.故答案为120;150;(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,由(1)得∠BOC=120°,∴∠BOM=BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为30°;(3)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON故答案为30,=;(4)∵MNAB∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为150;30.【点睛】本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.7、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析【分析】(1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.(2)根据角的和差定义证明即可.【详解】解:(1)①如图,直线AD即为所求作.②∠AOE即为所求作.(2)∠AOC+∠BOE=180°.理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.【点睛】本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.8、(1)见解析;(2)①;②【分析】(1)根据垂直的性质即可求解;(2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;②根据,可知OP内部,根据题意作图,分别表示出,故可求解.【详解】解:(1)∵(2)①∵OB平分情况1:当OE平分时,则旋转之后OB旋转的角度为情况2:当OF平分时,同理可得,OB旋转的角度为综上所述,②∵OP内部,如图所示,由题意知,,∵OM平分【点睛】此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.9、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等【分析】利用平行线的判定,由已知得ABEFABCD,可推出EFCD,利用平行线的性质得结论【详解】解:∵∠A=120°,∠FEC=120°(已知),∴∠A=∠FEC(等量代换),ABEF(同位角相等,两直线平行),又∵∠1=∠2(已知),ABCD(内错角相等,两直线平行),EFCD(平行于同一条直线的两直线互相平行),∴∠FDG=∠EFD(两直线平行,内错角相等),故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.【点睛】本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.10、(1)证明见解析;(2)【分析】(1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断(2)由可推出,即得出.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.(1)证明:∵(2)互余的角有:证明:∵  ,即综上,可知与互余的角有:【点睛】本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键. 

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试精练,共29页。试卷主要包含了如图,直线AB,如图,在等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。

    沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练:

    这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时训练,共31页。试卷主要包含了如图,能判定AB∥CD的条件是,如图,在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map