初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试综合训练题,共33页。试卷主要包含了下列说法,下列说法中正确的有等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
2、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是( )
A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°
3、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )
A.125° B.115° C.105° D.95°
4、如图所示,下列条件中,不能推出AB∥CE成立的条件是( )
A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°
5、下列说法:
①和为180°且有一条公共边的两个角是邻补角;
②过一点有且只有一条直线与已知直线垂直;
③同位角相等;
④经过直线外一点,有且只有一条直线与这条直线平行,
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
6、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
7、下列说法中正确的有( )
①一条直线的平行线只有一条.
②过一点与已知直线平行的直线只有一条.
③因为a∥b,c∥d,所以a∥d.
④经过直线外一点有且只有一条直线与已知直线平行.
A.1个 B.2个 C.3个 D.4个
8、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
9、如图所示,给出了过直线外一点P作已知直线l的平行线的方法,其依据是( ).
A.同位角相等,两直线平行. B.内错角相等,两直线平行.
C.同旁内角互补,两直线平行. D.以上都不对.
10、若直线a∥b,b∥c,则a∥c的依据是( ).
A.平行的性质 B.等量代换
C.平行于同一直线的两条直线平行. D.以上都不对
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.
2、如图,把一张长方形的纸条按如图那样折叠后,若量得∠DBA=40°,则∠ABC的度数为 _____度.
3、如图,OE是的平分线,交OA于点C,交OE于点D,,则的度数是______°.
4、如图,直线a、b、c分别与直线d、e相交,与∠1构成同位角的角共有________个,和∠l构成内错角的角共有________个,与∠1构成同旁内角的角共有________个.
5、下面两条平行线之间的三个图形,图____的面积最大,图______的面积最小.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在边长为1的正方形网格中,点A、B、C、D都在格点上.按要求画图:
(1)如图a,在线段AB上找一点P,使PC+PD最小.
(2)如图b,在线段AB上找一点Q,使CQ⊥AB,画出线段CQ.
(3)如图c,画线段CM∥AB.要求点M在格点上.
2、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.
证明:∵CE平分∠BCD(______)
∴∠1=_____(_______)
∵∠1=∠2=70°(已知)
∴∠1=∠2=∠4=70°(________)
∴AD∥BC(________)
∴∠D=180°-_______=180°-∠1-∠4=40°
∵∠3=40°(已知)
∴______=∠3
∴AB∥CD(_______)
3、已知AB∥CD,点是AB,CD之间的一点.
(1)如图1,试探索∠AEC,∠BAE,∠DCE之间的数量关系;
以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):
解:过点E作PE∥AB(过直线外一点有且只有一条直线与这条直线平行).
∵AB∥CD(已知),
∴PE∥CD( ),
∴∠BAE=∠1,∠DCE=∠2( ),
∴∠BAE+∠DCE= + (等式的性质).
即∠AEC,∠BAE,∠DCE之间的数量关系是 .
(2)如图2,点F是AB,CD之间的一点,AF平分∠BAE,CF平分∠DCE.
①若∠AEC=74°,求∠AFC的大小;
②若CG⊥AF,垂足为点G,CE平分∠DCG,∠AEC+∠AFC=126°,求∠BAE的大小.
4、如图直线,直线与分别和交于点交直线b于点C.
(1)若,直接写出 ;
(2)若,则点B到直线的距离是 ;
(3)在图中直接画出并求出点A到直线的距离.
5、已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点O处.
(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为 °,∠CON的度数为 °;
(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为 °;
(3)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为 °;∠DOC与∠BON的数量关系是∠DOC ∠BON(填“>”、“=”或“<”);
(4)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON的度数为 °;∠AOM﹣∠CON的度数为 °
6、如图,在ABC中,DEAC,DFAB.
(1)判断∠A与∠EDF之间的大小关系,并说明理由.
(2)求∠A+∠B+∠C的度数.
7、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:
(1)过点C画AD的平行线CE;
(2)过点B画CD的垂线,垂足为F.
8、推理填空:如图,直线,并且被直线所截,交和于点,平分,平分,使说明.
解:∵,
∴( )
∵平分,平分.
∴, ( )
∵
∴( )
∵
∴( )
9、完成下面的证明
如图,点B在AG上,AGCD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.
求证:∠F=90°.
证明:∵AGCD(已知)
∴∠ABC=∠BCD(____)
∵∠ABE=∠FCB(已知)
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB
即∠EBC=∠FCD
∵CF平分∠BCD(已知)
∴∠BCF=∠FCD(____)
∴____=∠BCF(等量代换)
∴BECF(____)
∴____=∠F(____)
∵BE⊥AF(已知)
∴____=90°(____)
∴∠F=90°.
10、已知直线AB和CD交于点O,∠AOC=α,∠BOE=90°,OF平分∠AOD.
(1)当α=30°时,则∠EOC=_________°;∠FOD=_________°.
(2)当α=60°时,射线OE′从OE开始以12°/秒的速度绕点O逆时针转动,同时射线OF′从OF开始以8°/秒的速度绕点O顺时针转动,当射线OE′转动一周时射线OF′也停止转动,求经过多少秒射线OE′与射线OF′第一次重合?
(3)在(2)的条件下,射线OE′在转动一周的过程中,当∠E′OF′=90°时,请直接写出射线OE′转动的时间为_________秒.
-参考答案-
一、单选题
1、B
【分析】
由邻补角,角平分线的定义,余角的性质进行依次判断即可.
【详解】
解:∵∠AOE=90°,∠DOF=90°,
∴∠BOE=90°=∠AOE=∠DOF,
∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
∴∠EOF=∠BOD,∠AOF=∠DOE,
∴当∠AOF=50°时,∠DOE=50°;
故①正确;
∵OB平分∠DOG,
∴∠BOD=∠BOG,
∴∠BOD=∠BOG=∠EOF=∠AOC,
故④正确;
∵,
∴∠BOD=180°-150°=30°,
∴
故③正确;
若为的平分线,则∠DOE=∠DOG,
∴∠BOG+∠BOD=90°-∠EOE,
∴∠EOF=30°,而无法确定,
∴无法说明②的正确性;
故选:B.
【点睛】
本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
2、D
【分析】
同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.
【详解】
解:(同位角相等,两直线平行),故A不符合题意;
∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;
(同位角相等,两直线平行)故C不符合题意;
∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,
所以不能判定 故D符合题意;
故选D
【点睛】
本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.
3、A
【分析】
利用互余角的概念与邻补角的概念解答即可.
【详解】
解:∵∠1=35°,∠AOC=90°,
∴∠BOC=∠AOC−∠1=55°.
∵点B,O,D在同一条直线上,
∴∠2=180°−∠BOC=125°.
故选:A.
【点睛】
本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.
4、B
【分析】
根据平行线的判定定理分析即可.
【详解】
A、∠A和∠ACE是AB与CE被AC所截形成的内错角,则∠A=∠ACE时,可以推出AB∥CE,不符合题意;
B、∠B和∠ACE不属于AB与CE被第三条直线所截形成的任何角,则∠B=∠ACE时,无法推出AB∥CE,符合题意;
C、∠B和∠ECD是AB与CE被BD所截形成的同位角,则∠B=∠ECD时,可以推出AB∥CE,不符合题意;
D、∠B和∠BCE AB与CE被BD所截形成的同旁内角,则∠B+∠BCE=180°时,可以推出AB∥CE,不符合题意;
故选:B.
【点睛】
本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.
5、B
【分析】
根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
【详解】
解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;
②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;
④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
其中正确的有④一共1个.
故选择B.
【点睛】
本题考查基本概念的理解,掌握基本概念是解题关键.
6、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
7、A
【分析】
根据平行线的性质,平行线的判定判断即可.
【详解】
∵一条直线的平行线有无数条,
∴①的说法不正确;
∵经过直线外一点有且只有一条直线与已知直线平行,
∴②的说法不正确,④的说法正确;
∵a∥b,c∥d,无法判定a∥d
∴③的说法不正确.
只有一个是正确的,
故选A.
【点睛】
本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
8、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
9、A
【分析】
由作图可得同位角相等,根据平行线的判定可作答.
【详解】
解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.
故选:A.
【点睛】
本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.
10、C
【分析】
根据平行公理的推论进行判断即可.
【详解】
解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,
故选:C.
【点睛】
本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.
二、填空题
1、50°
【分析】
三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.
【详解】
解:如图
故答案为:.
【点睛】
本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.
2、70
【分析】
由∠DBA的度数可知∠ABE度数,再根据折叠的性质可得∠ABC=∠EBC=∠ABE即可.
【详解】
解:延长DB到点E,如图:
∵∠DBA=40°,
∴∠ABE=180°﹣∠DBA=180°﹣40°=140°,
又∵把一张长方形的纸条按如图那样折叠,
∴∠ABC=∠EBC=∠ABE=70°,
故答案为:70.
【点睛】
本题主要考查了折叠的性质和邻补角的定义,属于基础题目,得到∠ABC=∠ABE是解题的关键.
3、25
【分析】
先证明再证明从而可得答案.
【详解】
解: OE是的平分线,
∵,
故答案为:
【点睛】
本题考查的是角平分线的定义,平行线的性质,熟练的运用平行线的性质与角平分线的定义证明角的相等是解本题的关键.
4、3 2 2
【分析】
根据同位角、内错角、同旁内角的定义判断即可;
【详解】
如图,与∠1是同位角的是:∠2, ∠3,∠4;与∠1是内错角的是:∠5, ∠6;与∠1是同旁内角的是:∠7,∠8.
【点睛】
本题主要考查了同位角、内错角、同旁内角的判断,准确分析是解题的关键.
5、3 2
【分析】
两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.
【详解】
解:图1、2、3的高相等,图2三角形的底是8,8÷2=4,图1梯形的上、下底之和除以2,即为(2+7)÷2=4.5;图3平行四边形的底为5,
∵5>4.5>4;
所以,图3平行四边形的面积最大,图2三角形的面积最小.
故答案是:3,2.
【点睛】
本题主要考查平行线的性质及等积法,熟练掌握平行线间的距离相等及等积法是解题的关键.
三、解答题
1、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)根据两点之间线段最短即连接CD,则CD与线段AB交于点P,此时PC+PD最小;
(2)根据图b可知∠B=45°,然后可在线段AB上找一点Q,使∠QCB=45°,则有CQ⊥AB,画出线段CQ;
(3)根据网格图c可知∠A=45°,然后再格点中找到∠MCA=45°,则有∠A=∠MCA=45°,进而可知CM∥AB.
【详解】
解:(1)如图a,点P即为所求;
(2)如图b,点Q和线段CQ即为所求;
(3)如图c,线段CM即为所求.
【点睛】
本题主要考查格点作图及结合了垂直的定义、平行线的性质等知识点,熟练掌握格点作图是解题的关键.
2、见解析
【分析】
由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.
【详解】
证明:∵CE平分∠BCD( 已知 ),
∴∠1= ∠4 ( 角平分线定义 ),
∵∠1=∠2=70°已知,
∴∠1=∠2=∠4=70°(等量代换),
∴AD∥BC(内错角相等,两直线平行),
∴∠D=180°-∠BCD=180°-∠1-∠4=40°,
∵∠3=40°已知,
∴ ∠D =∠3,
∴AB∥CD(内错角相等,两直线平行).
故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.
【点睛】
本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.
3、(1)平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE;(2)①37°;②52°
【分析】
(1)结合图形利用平行线的性质填空即可;
(2)①过F作FG∥AB,由(1)得:∠AEC=∠BAE+∠DCE,根据AB∥CD,FG∥AB,CD∥FG,得出∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,根据AF平分∠BAE,CF平分∠DCE,可得∠BAF=∠BAE,∠DCF=∠DCE,根据角的和差∠AFC=∠BAF+∠DCF=∠AEC即可;
②由①得:∠AEC=2∠AFC,可求∠AFC=42°,∠AEC=82°,根据CG⊥AF,求出∠GCF=90-∠AFC=48°,根据角平分线计算得出∠GCF=3∠DCF,求出∠DCF=16°即可.
【详解】
解:(1)平行于同一条直线的两条直线平行,
两直线平行,内错角相等,
∠1,∠2,
∠AEC=∠BAE+∠DCE,
故答案为:平行于同一条直线的两条直线平行,两直线平行,内错角相等,∠1,∠2,∠AEC=∠BAE+∠DCE,
(2)①过F作FG∥AB,
由(1)得:∠AEC=∠BAE+∠DCE,
∵AB∥CD,FG∥AB,
∴CD∥FG,
∴∠BAF=∠AFG,∠DCF=∠GFC,
∴∠AFC=∠AFG+∠GFC=∠BAF+∠DCF,
∵AF平分∠BAE,CF平分∠DCE,
∴∠BAF=∠BAE,∠DCF=∠DCE,
∴∠AFC=∠BAF+∠DCF,
=∠BAE+∠DCE,
=(∠BAE+∠DCE),
=∠AEC,
=×74°,
=37°;
②由①得:∠AEC=2∠AFC,
∵∠AEC+∠AFC=126°,
∴2∠AFC+∠AFC=126°
∴3∠AFC=126°,
∴∠AFC=42°,∠AEC=84°,
∵CG⊥AF,
∴∠CGF=90°,
∴∠GCF=90-∠AFC=48°,
∵CE平分∠DCG,
∴∠GCE=∠ECD,
∵CF平分∠DCE,
∴∠DCE=2∠DCF=2∠ECF,
∴∠GCF=3∠DCF,
∴∠DCF=16°,
∴∠DCE=32°,
∴∠BAE=∠AEC﹣∠DCE=52°.
【点睛】
本题考查平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程,掌握平行线性质,角平分线有关的计算,垂直定义,角的和差倍分,简单一元一次方程是解题关键.
4、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.
【分析】
(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;
(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;
(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.
【详解】
解:(1)∵,
∴,
∵,,
∴,
故答案为:;
(2)∵,
∴点B到直线AC的距离为线段,
故答案为:4;
(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,
∵,
∴为直角三角形,
∴SΔABC=12×AC×AB=12×BC×AD,
即,
解得:,
∴点A到直线BC的距离为.
【点睛】
题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.
5、(1)120;150;(2)30°;(3)30,=;(4)150;30.
【分析】
(1)根据∠AOC=60°,利用两角互补可得∠BOC=180°﹣60°=120°,根据∠AON=90°,利用两角和∠CON=∠AOC+∠AON即可得出结论;
(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;
(3)根据对顶角求出∠AOD=30°,根据∠AOC=60°,可得∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
(4)根据垂直可得∠AON与∠MNO互余,根据∠MNO=60°(三角板里面的60°角),可求∠AON=90°﹣60°=30°,根据∠AOC=60°,求出∠CON=∠AOC﹣∠AON=60°﹣30°=30°即可.
【详解】
解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°,
∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°=150°.
故答案为120;150;
(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,
由(1)得∠BOC=120°,
∴∠BOM=∠BOC=60°,
又∵∠MON=∠BOM+∠BON=90°,
∴∠BON=90°﹣60°=30°.
故答案为30°;
(3)∵∠AOD=∠BON(对顶角),∠BON=30°,
∴∠AOD=30°,
又∵∠AOC=60°,
∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.
故答案为30,=;
(4)∵MN⊥AB,
∴∠AON与∠MNO互余,
∵∠MNO=60°(三角板里面的60°角),
∴∠AON=90°﹣60°=30°,
∵∠AOC=60°,
∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,
∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,
∴∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.
故答案为150;30.
【点睛】
本题考查图中角度的计算,角平分线的定义,对顶角性质,互为余角,补角,掌握角度的和差计算,角平分线的定义,对顶角性质,互为余角,补角是解题关键.
6、(1)两角相等,见解析;(2)180°
【分析】
(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
【详解】
(1)两角相等,理由如下:
∵DE∥AC,
∴∠A=∠BED(两直线平行,同位角相等).
∵DF∥AB,
∴∠EDF=∠BED(两直线平行,内错角相等),
∴∠A=∠EDF(等量代换).
(2)∵DE∥AC,
∴∠C=∠EDB(两直线平行,同位角相等).
∵DF∥AB,
∴∠B=∠FDC(两直线平行,同位角相等).
∵∠EDB+∠EDF+∠FDC=180°,
∴∠A+∠B+∠C=180°(等量代换).
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
7、(1)见解析;(2)见解析
【分析】
(1)根据要求作出图形即可.
(2)根据要求作出图形即可.
【详解】
解:(1)根据题意得:AD是长为4,宽为3的长方形的对角线,
所以在点C右上方长为4,宽为3的长方形的对角线所在的直线与AD平行,
如图,直线CE即为所求作.
(2)根据题意得:CD是长为6,宽为3的长方形的对角线,
所以在点B右下方长为6,宽为3的长方形的对角线所在的直线与CD垂直,
如图,直线BF即为所求作.
【点睛】
本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.
8、两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【分析】
利用平行线的性质定理和判定定理解答即可.
【详解】
解:∵AB∥CD,
∴∠AME=∠CNE.(两直线平行,同位角相等),
∵MP平分∠AME,NQ平分∠CNE,
∴∠1=∠AME,=∠CNE.( 角平分线的定义),
∵∠AME=∠CNE,
∴∠1=∠2.(等量代换),
∵∠1=∠2,
∴MP∥NQ.(同位角相等,两直线平行).
故答案为:两直线平行,同位角相等;∠CNE,角平分线的定义;等量代换;同位角相等,两直线平行.
【点睛】
此题考查的是平行线的判定及性质,掌握平行线的性质定理和判定定理是解决此题的关键.
9、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义
【分析】
根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.
【详解】
证明:∵AG∥CD(已知),
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABE=∠FCB(已知),
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,
即∠EBC=∠FCD,
∵CF平分∠BCD(已知),
∴∠BCF=∠FCD(角平分线的定义),
∴∠EBC=∠BCF(等量代换),
∴BE∥CF(内错角相等,两直线平行),
∴∠BEF=∠F(两直线平行,内错角相等),
∵BE⊥AF(已知),
∴∠BEF=90°(垂直的定义),
∴∠F=90°.
故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.
10、(1)60,75;(2)秒;(3)3或12或21或30
【分析】
(1)根据题意利用互余和互补的定义可得:∠EOC与∠FOD的度数.
(2)由题意先根据,得出∠EOF=150°,则射线OE'、OF'第一次重合时,其OE'运动的度数+OF'运动的度数=150,列式解出即可;
(3)根据题意分两种情况在直线OE的左边和右边,进而根据其夹角列4个方程可得时间.
【详解】
解:(1)∵∠BOE=90°,
∴∠AOE=90°,
∵∠AOC=α=30°,
∴∠EOC=90°-30°=60°,
∠AOD=180°-30°=150°,
∵OF平分∠AOD,
∴∠FOD=∠AOD=×150°=75°;
故答案为:60,75;
(2)当,.
设当射线与射线重合时至少需要t秒,
可得,解得:;
答:当射线与射线重合时至少需要秒;
(3)设射线转动的时间为t秒,
由题意得:或或或,
解得:或12或21或30.
答:射线转动的时间为3或12或21或30秒.
【点睛】
本题考查对顶角相等,邻补角互补的定义,角平分线的定义,角的计算,第三问有难度,熟记相关性质是解题的关键,注意要分情况讨论.
相关试卷
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课时练习,共29页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
这是一份2020-2021学年第十三章 相交线 平行线综合与测试综合训练题,共31页。试卷主要包含了如图,∠1与∠2是同位角的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂达标检测题,共29页。试卷主要包含了直线等内容,欢迎下载使用。