初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共31页。试卷主要包含了如图,ABC≌DEF,点B,下列四个命题是真命题的有等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,是等边三角形,点在边上,,则的度数为( ).
A.25° B.60° C.90° D.100°
2、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )
A.8 B.10 C.9 D.16
3、一个三角形三个内角的度数分别是x,y,z.若,则这个三角形是( )
A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.不存在
4、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
A.2 B.3 C.4 D.7
5、已知三角形的两边长分别为2cm和3cm,则第三边长可能是( )
A.6cm B.5cm C.3cm D.1cm
6、如果三角形一边上的中线等于这条边的一半,那么这个三角形一定是( ).
A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
7、下列四个命题是真命题的有( )
①同位角相等;
②相等的角是对顶角;
③直角三角形两个锐角互余;
④三个内角相等的三角形是等边三角形.
A.1个 B.2个 C.3个 D.4个
8、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
9、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )
A.30° B.40° C.50° D.60°
10、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,PA=PB,请你添加一个适当的条件:___________,使得△PAD≌△PBC.
2、如图,线段,垂足为点,线段分别交、于点,,连结,.则的度数为______.
3、如图,已知,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的边长为______.的边长为______.
4、在中,若,则_______.
5、小华的作业中有一道数学题:“如图,AC,BD在AB的同侧,BD=4,AB=4,AC=1,∠CED=120°,点E是AB的中点,求CD的最大值.”哥哥看见了,提示他将△ACE和△BDE分别沿CE,连接A′B′.最后小华求解正确,得到CD的最大值是 _____.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求证:CE=CF;
(2)若CD=2,求DF的长.
2、已知:如图,∠ABC=∠DCB,∠1=∠2.求证AB=DC.
3、如图,在△ABC中,CE平分∠ACB交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.
4、已知:如图,点D为BC的中点,,求证:是等腰三角形.
5、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.
(1)求证:△BDE≌△CDF;
(2)求证:AE=AF.
6、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.
7、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.
(1)求证:;
(2)若的面积为8,的面积为6,求的面积.
8、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
(1)如图1,当时,直接写出BC与CE的位置关系;
(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
9、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
(1)求证DOB≌AOC;
(2)求∠CEB的大小;
(3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.
10、如图,是等边三角形,,分别交AB,AC于点D,E.
(1)求证:是等边三角形;
(2)点F在线段DE上,点G在外,,,求证:.
-参考答案-
一、单选题
1、D
【分析】
由等边三角形的性质及三角形外角定理即可求得结果.
【详解】
∵是等边三角形
∴∠C=60°
∴∠ADB=∠DBC+∠C=40°+60°=100°
故选:D
【点睛】
本题考查了等边三角形的性质、三角形外角的性质,掌握这两个性质是关键.
2、C
【分析】
延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
【详解】
解:如图,延长BD交AC于点E,
∵AD平分,,
∴,,
在和中,
,
∴,
∴,
∴SΔABD=SΔADE,SΔBDC=SΔCDE,
∴SΔADC=12SΔABC=12×18=9,
故选:C.
【点睛】
题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
3、C
【分析】
根据绝对值及平方的非负性可得,,再由三角形内角和定理将两个式子代入求解可得,,即可确定三角形的形状.
【详解】
解:,
∴且,
∴,,
∴,
∵,
∴,
解得:,,
∴三角形为等腰直角三角形,
故选:C.
【点睛】
题目主要考查绝对值及平方的非负性,三角形内角和定理,等腰三角形的判定等,理解题意,列出式子求解是解题关键.
4、B
【分析】
根据全等三角形的性质可得,根据即可求得答案.
【详解】
解:ABC≌DEF,
点B、E、C、F在同一直线上,BC=7,EC=4,
故选B
【点睛】
本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
5、C
【分析】
根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.
【详解】
解:设第三边长为xcm,根据三角形的三边关系可得:
3-2<x<3+2,
解得:1<x<5,
只有C选项在范围内.
故选:C.
【点睛】
本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.
6、B
【分析】
根据题意画出图形,利用等腰三角形的性质及三角形内角和定理即可得到答案.
【详解】
如图,在△ABC中,CD是边AB上的中线
∵AD=CD=BD
∴∠A=∠DCA,∠B=∠DCB
∵∠A+∠ACB+∠B=180°
∴ ∠A+∠DCA+∠DCB+∠B=180
即2∠A+2∠B=180°
∴∠A+∠B=90°
∴∠ACB=90°
∴△ABC是直角三角形
故选:B
【点睛】
本题考查了等腰三角形的性质及三角形内角和定理,熟练运用这两个知识是关键.
7、B
【分析】
利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
【详解】
①两直线平行,同位角相等,故错误,是假命题;
②相等的角是对顶角,错误,是假命题;
③直角三角形两个锐角互余,正确,是真命题;
④三个内角相等的三角形是等边三角形,正确,是真命题,
综上所述真命题有2个,
故选:B.
【点睛】
本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
8、A
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
9、A
【分析】
根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
【详解】
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM−∠CBP=50°−20°=30°,
故选:A.
【点睛】
本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
10、D
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
二、填空题
1、∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC 或AC=BD.
【分析】
已有∠P是公共角和边PA=PB,根据全等三角全等的条件,利用AAS需要添加∠D=∠C,根据ASA需要添加∠PAD=∠PBC或∠DBC=∠CAD,根据边角边需要添加 PD=PC 或PC=PD.填入一个即可.
【详解】
解:∵PA=PB,∠P是公共角,
∴根据AAS可以添加∠D=∠C,,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,∠D=∠C,
∴△PAD≌△PBC(AAS).
根据ASA可以添加∠PAD=∠PBC,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,∠PAD=∠PBC,
∴△PAD≌△PBC(ASA).
根据ASA可以添加∠DBC=∠CAD,
∴180°-∠DBC=180°-∠CAD,即∠PAD=∠PBC,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,∠PAD=∠PBC,
∴△PAD≌△PBC(ASA).
根据SAS可添加PD=PC
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,PD=PC,
∴△PAD≌△PBC(SAS).
根据SAS可添加BD=AC,
∵PA=PB,BD=AC,
∴PA+AC=PB+BD即PC=PD,
在△PAD和△PBC中,
∵PA=PB,∠P是公共角,PD=PC,
∴△PAD≌△PBC(SAS).
故答案为:∠D=∠C或∠PAD=∠PBC或∠DBC=∠CAD或PD=PC 或AC=BD.
【点睛】
本题考查三角形全等添加条件,掌握三角形全等判定方法与定理是解题关键.
2、270°
【分析】
由题意易得,然后根据三角形内角和定理可进行求解.
【详解】
解:∵,
∴,
∴,
∵,且,
∴,
同理可得:,
∴,
故答案为270°.
【点睛】
本题主要考查三角形内角和、垂直的定义及对顶角相等,熟练掌握三角形内角和、垂直的定义及对顶角相等是解题的关键.
3、2a 2n﹣1a
【分析】
利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到AnBn=2n﹣1a.
【详解】
解:∵△A1B1A2为等边三角形,∠MON=30°,
∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,
同理:A2O=A2B2=2=21a,
A3B3=A3O=2A2O=4a=22a,
…….
以此类推可得△AnBnAn+1的边长为AnBn=2n﹣1a.
故答案为:2a;2n﹣1a.
【点睛】
本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.
4、65°65度
【分析】
由三角形的内角和定理,得到,即可得到答案;
【详解】
解:在中,,
∵,
∴,
∴;
故答案为:65°.
【点睛】
本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于360°.
5、7
【分析】
由翻折的性质可证△EB'A'是等边三角形,则A'B'=A'E=2,再根据CD≤A'C+A'B'+B'D,即可求出CD的最大值.
【详解】
解:∵AB=4,点E为AB的中点,
∴AE=BE=2,
∵∠CED=120°,
∴∠AEC+∠DEB=60°,
∵将△ACE和△BDE分别沿CE,DE翻折得到△A′CE和△B′DE,
∴A'C=AC=1,AE=A'E=2,∠AEC=∠CEA',DB=DB'=4,BE=B'E=2,∠DEB=∠DEB',
∴∠A'EB'=60°,A'E=B'E=2,
∴△EB'A'是等边三角形,
∴A'B'=A'E=2,
∴当点C,点A',点B',点D四点共线时,CD有最大值=A'C+A'B'+B'D=7,
故答案为:7.
【点睛】
本题主要考查了翻折的性质,等边三角形的判定与性质,两点之间,线段最短等性质,证明△EB'A'是等边三角形是解题的关键.
三、解答题
1、
(1)证明见解析;
(2)4
【分析】
(1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;
(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.
(1)
证明:∵△ABC是等边三角形,
∴∠A=∠B=∠ACB=60°.
∵DE∥AB,
∴∠B=∠EDC=60°,∠A=∠CED=60°,
∴∠EDC=∠ECD=∠DEC=60°,
∵EF⊥ED,
∴∠DEF=90°,
∴∠F=30°
∵∠F+∠FEC=∠ECD=60°,
∴∠F=∠FEC=30°,
∴CE=CF.
(2)
解:由(1)可知∠EDC=∠ECD=∠DEC=60°,
∴CE=DC=2.
又∵CE=CF,
∴CF=2.
∴DF=DC+CF=2+2=4.
【点睛】
本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.
2、见解析
【分析】
由“ASA”可证△ABO≌△DCO,可得结论.
【详解】
证明:如图,记的交点为
∵∠ABC=∠DCB,∠1=∠2,
又∵∠OBC=∠ABC−∠1,∠OCB=∠DCB−∠2,
∴∠OBC=∠OCB,
∴OB=OC,
在△ABO和△DCO中,,
∴△ABO≌△DCO(ASA),
∴AB=DC.
【点睛】
本题考查了全等三角形的判定和性质,掌握全等三角形的判定定理是本题的关键.
3、∠AFE=50°.
【分析】
根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.
【详解】
解:∵CE平分∠ACB,∠ACB=80°,
∴∠ECB=,
∵AD是△ABC边BC上的高,AD⊥BC,
∴∠ADC=90°,
∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
∴∠AFE=∠DFC=50°.
【点睛】
本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.
4、证明见解析
【分析】
过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
【详解】
如下图,过点D作,交AB于点M,过点D做,交AC于点N
∵
∴
直角和直角中
∴
∴
∵点D为BC的中点,
∴
直角和直角中
∴
∴
∵,
∴,即是等腰三角形.
【点睛】
本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
5、(1)见解析;(2)见解析
【分析】
(1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;
(2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.
【详解】
证明:(1)∵CE⊥AB,BF⊥AC,
∴∠BED=∠CFD=90°,
在△BED和△CFD中,
,
∴△BED≌△CFD(AAS);
(2)∵△BED≌△CFD,
∴DE=DF,
∴BD+DF=CD+DE,
∴BF=CE,
在△ABF和△ACE中,
,
∴△ABF≌△ACE(AAS),
∴AE=AF.
【点睛】
本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.
6、答案见解析
【分析】
AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
【详解】
解:如图,
……
[答案不唯一]
【点睛】
本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
7、
(1)见解析
(2)的面积为20.
【分析】
(1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.
(2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.
(1)
(1)解:由题意可知:
是的中线
在与中
.
(2)
解:的面积为8,的面积为6.
,即
,即
由(1)可知:
,
.
【点睛】
本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
8、
(1)
(2)或,见解析
【分析】
(1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
(2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
(1)
解:,,
∴∠B=∠ACB=45°,
∵,
∴,即∠BAD=∠CAE,
∵,,
∴△BAD≌△CAE,
∴∠ACE=∠B=45°,
∴∠BCE=∠ACB+∠ACE=90°,
∴;
(2)
解:如图,补全图形;
.
证明:∵,
∴.
又∵,,
∴≌.
∴,,.
∵,
∴.
∴.
延长EF到点G,使.
∵,
∴.
∴.
∵,
∴.
∴.
∵,
∴≌.
∴.
∵,
∴.
如图,同理可证.
.
【点睛】
此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
9、(1)见详解;(2)120°;(2)120°.
【分析】
(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
(2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
(3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
【详解】
(1)证明:如图1,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠BOD=∠AOC=120°,
在△AOC和△BOD中
∴△AOC≌△BOD;
(2)解:∵△AOC≌△BOD,
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
(3)解:如图2,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
在△AOC和△BOD中
∴△AOC≌△BOD;
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
即∠CEB的大小不变.
【点睛】
本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
10、(1)见详解;(2)见详解
【分析】
(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;
(2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.
【详解】
证明:(1)∵是等边三角形,
∴,
∵DE∥BC,
∴,
∴,
∴是等边三角形;
(2)连接AG,如图所示:
∵是等边三角形,
∴,AB=AC,
∵,,
∴△ABF≌△ACG(SAS),
∴,
∵,
∴,
∴是等边三角形,
∴.
【点睛】
本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.
相关试卷
这是一份2021学年第十四章 三角形综合与测试同步练习题,共30页。试卷主要包含了如图,ABC≌DEF,点B,有下列说法,下列说法错误的是,下列命题是真命题的是等内容,欢迎下载使用。
这是一份数学沪教版 (五四制)第十四章 三角形综合与测试课后测评,共30页。试卷主要包含了三角形的外角和是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共29页。