2020-2021学年第十四章 三角形综合与测试同步训练题
展开
这是一份2020-2021学年第十四章 三角形综合与测试同步训练题,共32页。试卷主要包含了下列四个命题是真命题的有,如图,ABC≌DEF,点B,下列三个说法,下列说法不正确的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )
A.42° B.48° C.52° D.58°
2、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
3、若一个三角形的三个外角之比为3:4:5,则该三角形为( )
A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形
4、如图,,AC,BD相交于点O.添加一个条件,不一定能使≌的是( )
A. B.
C. D.
5、下列四个命题是真命题的有( )
①同位角相等;
②相等的角是对顶角;
③直角三角形两个锐角互余;
④三个内角相等的三角形是等边三角形.
A.1个 B.2个 C.3个 D.4个
6、如图,ABC≌DEF,点B、E、C、F在同一直线上,若BC=7,EC=4,则CF的长是( )
A.2 B.3 C.4 D.7
7、下列三个说法:
①有一个内角是30°,腰长是6的两个等腰三角形全等;
②有一个内角是120°,底边长是3的两个等腰三角形全等;
③有两条边长分别为5,12的两个直角三角形全等.
其中正确的个数有( ).
A.3 B.2 C.1 D.0
8、下列说法不正确的是( )
A.有两边对应相等的两个直角三角形全等;
B.等边三角形的底角与顶角相等;
C.有一个角是的直角三角形是等腰直角三角形;
D.如果点与点到直线的距离相等,那么点与点关于直线对称.
9、如图,在中,,,,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )
A.3 B.4 C.5 D.6
10、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AD⊥BC,∠1=∠B,∠C=65°,∠BAC=__________
2、如图,已知,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的边长为______.的边长为______.
3、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.
4、边长为1的小正方形组成如图所示的6×6网格,点A,B,C,D,E,F,G,H都在格点上.其中到四边形ABCD四个顶点距离之和最小的点是_________.
5、如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,将△ABC绕点C顺时针旋转30°得到△A′B′C,A、B分别与A′、B′对应,CA′交AB于点M,则CM的长为 ___.
三、解答题(10小题,每小题5分,共计50分)
1、人教版初中数学教科书八年级上册第36、37页告诉我们作一个角等于已知角的方法:
已知:∠AOB.
求作:∠A′O′B′,使∠A′O′B′=∠AOB.
作图:
(1)以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;
(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD长为半径画弧,与第2步中所画的弧相交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
请你根据以上材料完成下列问题:
(1)完成下面证明过程(将正确答案写在相应的横线上).
证明:由作图可知,在△O′C′D′和△OCD中,
,
∴△O′C′D′≌ ,
∴∠A′O′B'=∠AOB.
(2)这种作一个角等于已知角的方法依据是 .(填序号)
①AAS;②ASA;③SSS;④SAS
2、如图,E为AB上一点,BD∥AC,AB=BD,AC=BE.求证:BC=DE.
3、如图,点A,B,C,D在一条直线上,,,.
(1)求证:.
(2)若,,求∠F的度数.
4、如图,在四边形ABCD中,E是CB上一点,分别延长AE,DC相交于点F,,.
(1)求证:;
(2)若,求BE的长.
5、如图所示,四边形的对角线、相交于点,已知,.求证:
(1);
(2).
6、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求证:CE=CF;
(2)若CD=2,求DF的长.
7、直线l经过点A,在直线l上方,.
(1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:
(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.
(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.
8、如图,Rt△ACB中,∠ACB=90°,AC=BC,E点为射线CB上一动点,连结AE,作AF⊥AE且AF=AE.
(1)如图1,过F点作FD⊥AC交AC于D点,求证:FD=BC;
(2)如图2,连结BF交AC于G点,若AG=3,CG=1,求证:E点为BC中点.
(3)当E点在射线CB上,连结BF与直线AC交子G点,若BC=4,BE=3,则 .(直接写出结果)
9、如图,点D在AC上,BC,DE交于点F,,,.
(1)求证:;
(2)若,求∠CDE的度数.
10、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
-参考答案-
一、单选题
1、B
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
2、A
【分析】
三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
3、A
【分析】
根据三角形外角和为360°计算,求出内角的度数,判断即可.
【详解】
解:设三角形的三个外角的度数分别为3x、4x、5x,
则3x+4x+5x=360°,
解得,x=30°,
∴三角形的三个外角的度数分别为90°、120°、150°,
对应的三个内角的度数分别为90°、60°、30°,
∴此三角形为直角三角形,
故选:A.
【点睛】
本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.
4、C
【分析】
直接利用直角三角形全等的判定定理(定理)即可判断选项;先根据等腰三角形的性质可得,再根据三角形全等的判定定理(定理)即可判断选项;直接利用三角形全等的判定定理(定理)即可判断选项,由此即可得出答案.
【详解】
解:当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,
,
在和中,,
,则选项不符题意;
当添加条件是时,
在和中,,
,则选项不符题意;
当添加条件是时,不一定能使,则选项符合题意;
故选:C.
【点睛】
本题考查了三角形全等的判定、等腰三角形的性质,熟练掌握三角形全等的判定方法是解题关键.
5、B
【分析】
利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.
【详解】
①两直线平行,同位角相等,故错误,是假命题;
②相等的角是对顶角,错误,是假命题;
③直角三角形两个锐角互余,正确,是真命题;
④三个内角相等的三角形是等边三角形,正确,是真命题,
综上所述真命题有2个,
故选:B.
【点睛】
本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.
6、B
【分析】
根据全等三角形的性质可得,根据即可求得答案.
【详解】
解:ABC≌DEF,
点B、E、C、F在同一直线上,BC=7,EC=4,
故选B
【点睛】
本题考查了全等三角形的性质,掌握全等三角形的性质是解题的关键.
7、C
【分析】
根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可.
【详解】
解:①当一个是底角是30°,一个是顶角是30°时,两三角形就不全等,故本选项错误;
②有一个内角是120°,底边长是3的两个等腰三角形全等,本选项正确;
③当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,
故选:C.
【点睛】
本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键.
8、D
【分析】
利用全等三角形的判定、等边三角形的判定及轴对称的性质分别判断后即可确定不正确的选项.
【详解】
解:A、有两边对应相等的两个直角三角形全等,正确;
B、等边三角形的三个内角都是60°,所以等边三角形的底角与顶角相等,正确;
C、有一个角是的直角三角形是等腰直角三角形,正确;
D、当点与点在直线的同侧时,点与点关于直线不对称,错误,
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解全等三角形的判定、等边三角形的判定及轴对称的性质等知识,属于基础定理,难度不大.
9、A
【分析】
先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得.
【详解】
由旋转的性质得:,
,
是等边三角形,
,
,
.
故选:A.
【点睛】
本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.
10、A
【分析】
根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
【详解】
解:
A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
B.
,
故能判定,不符合题意;
C. ,,
,故能判定,不符合题意;
D.
,故能判定,不符合题意;
故选A
【点睛】
本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
二、填空题
1、70°
【分析】
先根据AD⊥BC可知∠ADB=∠ADC=90°,再根据直角三角形的性质求出∠1与∠DAC的度数,由∠BAC=∠1+∠DAC即可得出结论.
【详解】
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
∴∠DAC=90°﹣65°=25°,∠1=∠B=45°,
∴∠BAC=∠1+∠DAC=45°+25°=70°.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
2、2a 2n﹣1a
【分析】
利用等边三角形的性质得到∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,利用同样的方法得到A2O=A2B2=2a=21a,A3B3=A3O=2A2O=4=22a,利用此规律即可得到AnBn=2n﹣1a.
【详解】
解:∵△A1B1A2为等边三角形,∠MON=30°,
∴∠A1OB1=∠A1B1O=30°,OA1=A1B1=A2B1=a,
同理:A2O=A2B2=2=21a,
A3B3=A3O=2A2O=4a=22a,
…….
以此类推可得△AnBnAn+1的边长为AnBn=2n﹣1a.
故答案为:2a;2n﹣1a.
【点睛】
本题考查规律型:图形的变化类,等边三角形的性质,解题关键是掌握三角形边长的变化规律.
3、65°度
【分析】
由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.
【详解】
解:∵点D为BC边的中点,
∴BD=CD,
∵将∠C沿DE翻折,使点C落在AB上的点F处,
∴DF=CD,∠EFD=∠C,
∴DF=BD,
∴∠BFD=∠B,
∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,
∴∠A=∠AFE,
∵∠AEF=50°,
∴∠A=(180°-50°)=65°.
故答案为:65°.
【点睛】
本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.
4、E
【分析】
到四边形ABCD四个顶点距离之和最小的点是对角线的交点,连接对角线,直接判断即可.
【详解】
如图所示,连接BD、AC、GA、GB、GC、GD,
∵,,
∴到四边形ABCD四个顶点距离之和最小是,该点为对角线的交点,
根据图形可知,对角线交点为E,
故答案为:E.
【点睛】
本题考查了三角形三边关系,解题关键是通过连接辅助线,运用三角形三边关系判断点的位置.
5、
【分析】
根据旋转的性质可得,,所以,由题意可得:,为等边三角形,即可求解.
【详解】
解:∵,,
∴,
由旋转的性质可得,,
∴,
∴为等边三角形,
∴,
故答案为:
【点睛】
此题考查了直角三角形的性质,旋转的性质以及等边三角形的判定与性质,解题的关键是灵活掌握相关基本性质进行求解.
三、解答题
1、
(1)CD,O′D′,△OCD,
(2)③
【分析】
(1)根据SSS证明△D′O′C′≌△DOC,可得结论;
(2)根据SSS证明三角形全等.
(1)
证明:由作图可知,在△D′O′C′和△DOC中,
,
∴△O′C′D′≌△OCD(SSS),
∴∠A′O′B′=∠AOB.
故答案为:CD,O′D′,△OCD,
(2)
解:上述证明过程中利用三角形全等的方法依据是SSS,
故答案为:③
【点睛】
本题考查三角形综合题,考查了三角形全等的判定和性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
2、见解析
【分析】
根据平行线的性质可得,利用全等三角形的判定定理即可证明.
【详解】
证明:∵,
∴.
在和中,
,
∴,
∴.
【点睛】
题目主要考查全等三角形的判定定理和平行线的性质,熟练掌握全等三角形的判定定理是解题关键.
3、(1)见解析;(2)
【分析】
(1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
(2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
【详解】
(1)证明:
,
即
又,
(2)解:,,
【点睛】
本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.
4、
(1)见解析
(2)
【分析】
(1)利用是的外角,以及证明即可.
(2)证明≌,可知,从而得出答案.
(1)
证明:∵是的外角,
∴.
又∵,∴.
(2)
解:在和中,
,
∴≌.
∴.
∵,
∴.
【点睛】
本题考查了三角形的外角以及三角形全等的性质和判定,掌握三角形全等的性质和判定是解题的关键.
5、
(1)证明见解析;
(2)证明见解析.
【分析】
(1)根据全等三角形的判定定理可直接证明;
(2)根据(1)中结论可得,再由等角对等边得出,运用等式的性质进行计算即可证明.
(1)
解:在与中,
,
∴;
(2)
由(1)可得:,
∴,
∵,
∴,
∴,
即.
【点睛】
题目主要考查全等三角形的判定和性质,等角对等边的性质,理解题意,综合运用这些知识点是解题关键.
6、
(1)证明见解析;
(2)4
【分析】
(1)根据等边三角形的性质和平行线的性质可证得∠EDC=∠ECD=∠DEC=60°,再根据直角定义和三角形的外角性质证得∠F=∠FEC=30°,利用等角对等边即可证得结论;
(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解.
(1)
证明:∵△ABC是等边三角形,
∴∠A=∠B=∠ACB=60°.
∵DE∥AB,
∴∠B=∠EDC=60°,∠A=∠CED=60°,
∴∠EDC=∠ECD=∠DEC=60°,
∵EF⊥ED,
∴∠DEF=90°,
∴∠F=30°
∵∠F+∠FEC=∠ECD=60°,
∴∠F=∠FEC=30°,
∴CE=CF.
(2)
解:由(1)可知∠EDC=∠ECD=∠DEC=60°,
∴CE=DC=2.
又∵CE=CF,
∴CF=2.
∴DF=DC+CF=2+2=4.
【点睛】
本题考查等边三角形的性质、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键.
7、(1)见解析;(2)猜想:,见解析;(3)见解析
【分析】
(1)先证明和,再根据证明即可;
(2)根据AAS证明得,,进一步可得出结论;
(3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.
【详解】
解:(1)证明:∵,,
∴,
∴
∵,
∴
∴,
在与中
,
∴
(2)猜想:,
∵
∴,
∴,
在与中
∴,
∴,,
∴
(3)分别过点C、E作,,
同(1)可证,,
∴,
∴,
∵,,
∴
在与中
∴,
∴,
∴G为CE的中点.
【点睛】
本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.
8、(1)证明见解析;(2)证明见解析;(3)或
【分析】
(1)证明△AFD≌△EAC,根据全等三角形的性质得到DF=AC,等量代换证明结论;
(2)作FD⊥AC于D,证明△FDG≌△BCG,得到DG=CG,求出CE,CB的长,得到答案;
(3)过F作FD⊥AG的延长线交于点D,根据全等三角形的性质得到CG=GD,AD=CE=7,代入计算即可.
【详解】
(1)证明:∵FD⊥AC,
∴∠FDA=90°,
∴∠DFA+∠DAF=90°,
同理,∠CAE+∠DAF=90°,
∴∠DFA=∠CAE,
在△AFD和△EAC中,
,
∴△AFD≌△EAC(AAS),
∴DF=AC,
∵AC=BC,
∴FD=BC;
(2)作FD⊥AC于D,
由(1)得,FD=AC=BC,AD=CE,
在△FDG和△BCG中,
,
∴△FDG≌△BCG(AAS),
∴DG=CG=1,
∴AD=2,
∴CE=2,
∵BC=AC=AG+CG=4,
∴E点为BC中点;
(3)当点E在CB的延长线上时,过F作FD⊥AG的延长线交于点D,
BC=AC=4,CE=CB+BE=7,
由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,
∴CG=GD,AD=CE=7,
∴CG=DG=1.5,
∴AG=CG+AC=5.5,
∴,
同理,当点E在线段BC上时,AG= AC -CG+=2.5,
∴,
故答案为:或.
【点睛】
本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.
9、
(1)证明见解析;
(2)∠CDE=20°.
【分析】
(1)由“SAS”可证△ABC≌△DBE;
(2)由全等三角形的性质可得∠C=∠E,由三角形的外角性质可求解.
(1)
证明:∵∠ABD=∠CBE,
∴∠ABD+∠DBC=∠CBE+∠DBC,
即:∠ABC=∠DBE,
在△ABC和△DBE中,
,
∴△ABC≌△DBE(SAS);
(2)
解:由(1)可知:△ABC≌△DBE,
∴∠C=∠E,
∵∠DFB=∠C+∠CDE,
∠DFB=∠E+∠CBE,
∴∠CDE=∠CBE,
∵∠ABD=∠CBE=20°,
∴∠CDE=20°.
【点睛】
本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键.
10、(1);(2)证明见详解.
.
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共33页。试卷主要包含了下列三个说法等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步练习题,共34页。试卷主要包含了已知长方形纸片ABCD,点E等内容,欢迎下载使用。
这是一份初中沪教版 (五四制)第十四章 三角形综合与测试一课一练,共30页。试卷主要包含了如图,在中,,如图,直线l1l2,被直线l3等内容,欢迎下载使用。