所属成套资源:高中数学(新教材)新北师大版必修第二册同步学案讲义【解析版】
- 第二章 §6 6.2 第2课时 含参函数的极值问题学案 学案 4 次下载
- 第二章 §6 6.3 第1课时 函数的最值学案 学案 2 次下载
- 第二章 §7 7.1 实际问题中导数的意义学案 学案 3 次下载
- 第二章 §7 7.2 实际问题中的最值问题学案 学案 3 次下载
- 第二章 习题课 构造函数问题学案 学案 3 次下载
数学北师大版 (2019)第二章 导数及其应用6 用导数研究函数的性质6.3 函数的最值第2课时学案
展开
这是一份数学北师大版 (2019)第二章 导数及其应用6 用导数研究函数的性质6.3 函数的最值第2课时学案,共14页。学案主要包含了求含参数的函数的最值,由最值求参数的值或范围,与最值有关的探究性问题等内容,欢迎下载使用。
一、求含参数的函数的最值
例1 已知函数f(x)=x3-ax2-a2x.求函数f(x)在[0,+∞)上的最小值.
解 f′(x)=3x2-2ax-a2=(3x+a)(x-a),
令f′(x)=0,得x1=-eq \f(a,3),x2=a.
①当a>0时,f(x)在[0,a)上单调递减,在[a,+∞)上单调递增.所以f(x)min=f(a)=-a3.
②当a=0时,f′(x)=3x2≥0,f(x)在[0,+∞)上单调递增,所以f(x)min=f(0)=0.
③当a0时,f(x)的最小值为-a3;
当a=0时,f(x)的最小值为0;
当a0时,求函数f(x)=x3-ax2-a2x在[-a,2a]上的最值.
解 f′(x)=(3x+a)(x-a)(a>0),
令f′(x)=0,得x1=-eq \f(a,3),x2=a.
所以f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(-a,-\f(a,3)))上单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(a,3),a))上单调递减,在[a,2a]上单调递增.
因为f(-a)=-a3,f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(a,3)))=eq \f(5,27)a3,f(a)=-a3,
f(2a)=2a3.
所以f(x)max=f(2a)=2a3.
f(x)min=f(-a)=f(a)=-a3.
反思感悟 含参数的函数最值问题的两类情况
(1)能根据条件求出参数,从而化为不含参数的函数的最值问题.
(2)对于不能求出参数值的问题,则要对参数进行讨论,其实质是讨论导函数大于0、等于0、小于0三种情况.若导函数恒不等于0,则函数在已知区间上是单调函数,最值在端点处取得;若导函数可能等于0,则求出极值点后求极值,再与端点值比较后确定最值.
跟踪训练1 已知函数f(x)=(x-k)ex.
(1)求f(x)的极值;
(2)求f(x)在区间[0,1]上的最小值.
解 (1)由f(x)=(x-k)ex,可得f′(x)=(x-k+1)ex,
令f′(x)=0,得x=k-1,
随x的变化,f(x)与f′(x)的变化情况如下表:
所以f(x)的单调递减区间是(-∞,k-1);单调递增区间是(k-1,+∞).
所以f(x)有极小值f(k-1)=-ek-1,无极大值.
(2)当k-1≤0,即k≤1时,f′(x)=(x-k+1)ex≥0在x∈[0,1]上恒成立,
则函数f(x)在[0,1]上单调递增,
所以f(x)在区间[0,1]上的最小值为f(0)=-k;
当0
相关学案
这是一份北师大版 (2019)选择性必修 第二册6.3 函数的最值导学案及答案,共10页。
这是一份高中数学苏教版 (2019)必修 第一册5.3 函数的单调性第2课时学案设计,共14页。学案主要包含了利用图象求函数的最大值,利用函数的单调性求函数的最值,二次函数的最值问题等内容,欢迎下载使用。
这是一份高中数学北师大版 (2019)选择性必修 第二册6.1 函数的单调性第2课时导学案,共10页。学案主要包含了求含参函数的单调区间等内容,欢迎下载使用。