终身会员
搜索
    上传资料 赚现金

    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选)

    立即下载
    加入资料篮
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选)第1页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选)第2页
    难点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线综合训练试卷(精选)第3页
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中沪教版 (五四制)第十三章 相交线 平行线综合与测试精练

    展开

    这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试精练,共30页。试卷主要包含了下列说法,如图木条a,下列说法中,正确的是,直线m外一点P它到直线的上点A等内容,欢迎下载使用。
    七年级数学第二学期第十三章相交线 平行线综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,直线b、c被直线a所截,则与是( )

    A.对顶角 B.同位角 C.内错角 D.同旁内角
    2、如图,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,则下列说法错误的是(  )

    A.线段AC的长度表示点C到AB的距离
    B.线段AD的长度表示点A到BC的距离
    C.线段CD的长度表示点C到AD的距离
    D.线段BD的长度表示点A到BD的距离
    3、若直线a∥b,b∥c,则a∥c的依据是( ).
    A.平行的性质 B.等量代换
    C.平行于同一直线的两条直线平行. D.以上都不对
    4、下列说法:
    (1)两条不相交的直线是平行线;
    (2)过一点有且只有一条直线与已知直线平行;
    (3)在同一平面内两条不相交的线段一定平行;
    (4)过一点有且只有一条直线与已知直线垂直;
    (5)两点之间,直线最短;
    其中正确个数是(   )
    A.0个 B.1个 C.2个 D.3个
    5、如图木条a、b、c用螺丝固定在木板a上,且,将木条a、木条b、木条c看作是在同一平面a内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系则下列描述错误的是( )

    A.木条b、c固定不动,木条a绕点B顺时针旋转20°
    B.木条b、c固定不动,木条a绕点B逆时针旋转160°
    C.木条a、c固定不动,木条b绕点E逆时针旋转20°
    D.木条a、c固定不动,木条b绕点E顺时针旋转110°
    6、如图,把长方形沿EF对折,若,则的度数为( )

    A. B. C. D.
    7、如果两个角的一边在同一直线上,另一边互相平行,则这两个角( )
    A.相等 B.互补 C.互余 D.相等或互补
    8、下列说法中,正确的是(  )
    A.从直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离
    B.互相垂直的两条直线不一定相交
    C.直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm
    D.过一点有且只有一条直线垂直于已知直线
    9、直线m外一点P它到直线的上点A、B、C的距离分别是6cm、5cm、3cm,则点P到直线m的距离为( )
    A.3cm B.5cm C.6cm D.不大于3cm
    10、如图,有A,B,C三个地点,且∠ABC=90°,B地在A地的北偏东43°方向,那么C地在B地的(  )方向.

    A.南偏东47° B.南偏西43° C.北偏东43° D.北偏西47°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图所示,直线a,b被c所截,∠1=30°,∠2:∠3=1:5,则直线a与b的位置关系是________.

    2、如图,∠AOB=90°,则AB___BO;若OA=3cm,OB=2cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连接的所有线段中________最短.

    3、规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.
    4、如图,直线AB和CD交于O点,OD平分∠BOF,OE ⊥CD于点O,∠AOC=40°,则∠EOF=_______.

    5、一副三角板按如图方式放置,含45°角的三角板的斜边与含30°角的三角板的长直角边平行,则∠α的度数是______.

    三、解答题(10小题,每小题5分,共计50分)
    1、根据要求画图或作答:如图所示,已知A、B、C三点.

    (1)连结线段AB;
    (2)画直线AC和射线BC;
    (3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.
    2、如图,直线AB、CD相交于点O,已知OE平分∠BOD,且∠AOC:∠AOD=3:7.
    (1)求∠DOE的度数;
    (2)若∠EOF是直角,求∠COF的度数.

    3、已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.
    (基础问题)如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分).
    证明:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(    )
    ∵MN∥AB,
    ∴∠A=(    )(    )
    ∵MN∥CD,
    ∴∠D=    (    )
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    (类比探究)如图2,当点G在线段EF延长线上时,直接写出∠AGD、∠A、∠D三者之间的数量关系.
    (应用拓展)如图3,AH平分∠GAB,DH交AH于点H,且∠GDH=2∠HDC,∠HDC=22°,∠H=32°,直接写出∠DGA的度数.

    4、如图,在8×6的正方形网格中,每个小正方形的顶点称为格点,点D是∠ABC的边BC上的一点,点M是∠ABC内部的一点,点A、B、C、D、M均在格点上,只用无刻度的直尺,在给定的网格中按要求画图,并回答问题:
    (1)过点M画BC的平行线MN交AB于点N;
    (2)过点D画BC的垂线DE,交AB于点E;
    (3)点E到直线BC的距离是线段    的长度.

    5、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.

    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=  (   ).
    ∴AB∥  (   ).
    又∵∠1=∠2(已知),
    ∴AB∥CD (   ).
    ∴EF∥   (   ).
    ∴∠FDG=∠EFD (   ).
    6、如图,在ABC中,DEAC,DFAB.
    (1)判断∠A与∠EDF之间的大小关系,并说明理由.
    (2)求∠A+∠B+∠C的度数.

    7、如图,OA⊥OB于点O,∠AOD:∠BOD=7:2,点D、O、E在同一条直线上,OC平分∠BOE,求∠COD的度数.

    8、如图所示,点、分别在、上,、均与相交,,,求证:.

    9、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.
    (1)如图1,求∠DOE的度数;
    (2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.

    10、如图,直线CD与EF相交于点O,将一直角三角尺AOB的直角顶点与点O重合.

    (1)如图1,若,试说明;
    (2)如图2,若,OB平分.将三角尺以每秒5°的速度绕点O顺时针旋转,设运动时间为t秒.
    ①,当t为何值时,直线OE平分;
    ②当,三角尺AOB旋转到三角POQ(A、B分别对应P、Q)的位置,若OM平分,求的值.

    -参考答案-
    一、单选题
    1、B
    【分析】
    根据对顶角、同位角、内错角、同旁内角的特征去判断即可.
    【详解】
    ∠1与∠2是同位角
    故选:B
    【点睛】
    本题考查了同位角的含义,理解同位角的含义并正确判断同位角是关键.
    2、D
    【分析】
    根据直线外一点,到这条直线的垂线段的长度是这点到直线的距离判断即可.
    【详解】
    解:A. 线段AC的长度表示点C到AB的距离,说法正确,不符合题意;
    B. 线段AD的长度表示点A到BC的距离,说法正确,不符合题意;
    C. 线段CD的长度表示点C到AD的距离,说法正确,不符合题意;
    D. 线段BD的长度表示点B到AD的距离,原说法错误,符合题意;
    故选:D.
    【点睛】
    本题考查了点到直线的距离,解题关键是准确识图,正确进行判断.
    3、C
    【分析】
    根据平行公理的推论进行判断即可.
    【详解】
    解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,
    故选:C.
    【点睛】
    本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.
    4、B
    【分析】
    根据平面内相交线和平行线的基本性质逐项分析即可.
    【详解】
    解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误;
    (2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;
    (3)在同一平面内两条不相交的线段不一定平行,故原说法错误;
    (4)过一点有且只有一条直线与已知直线垂直,故原说法正确;
    (5)两点之间,线段最短,故原说法错误;
    故选:B.
    【点睛】
    本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.
    5、D
    【分析】
    根据同位角相等,两直线平行,逐项判断即可.
    【详解】
    解:A、木条b、c固定不动,木条a绕点B顺时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    B、木条b、c固定不动,木条a绕点B逆时针旋转160°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    C、木条a、c固定不动,木条b绕点E逆时针旋转20°,此时 ,则 ,有 ,故本选项正确,不符合题意;
    D、木条a、c固定不动,木条b绕点E顺时针旋转110°,木条b、c重合,则 ,故本选项错误,符合题意.
    故选:D.
    【点睛】
    本题主要考查了平行线的判定,图形的旋转,熟练掌握同位角相等,两直线平行是解题的关键.
    6、B
    【分析】
    根据折叠的性质及∠1=50°可求出∠BFE的度数,再由平行线的性质即可得到∠AEF的度数.
    【详解】
    解:根据折叠以及∠1=50°,得
    ∠BFE=∠BFG=(180°﹣∠1)=65°.
    ∵AD∥BC,
    ∴∠AEF=180°﹣∠BFE=115°.
    故选:B.
    【点睛】
    本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    7、D
    【分析】
    根据平行线的性质,结合图形解答即可.
    【详解】
    如图,当AE∥BD时,∠EAB与∠DBC符合题意,
    ∴∠EAB=∠DBC;

    如图,当AE∥BD时,∠EAF与∠DBC符合题意,
    ∵∠EAB+∠EAF=180°,∠EAB=∠DBC,
    ∴∠DBC +∠EAF=180°,
    故选D.
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质,灵活运用属性结合是解题的关键.
    8、C
    【分析】
    根据点到直线距离的定义分析,可判断选项A和C;根据相交线的定义分析,可判断选项B,根据垂线的定义分析,可判断选项D,从而完成求解.
    【详解】
    从直线外一点到这条直线的垂线段的长度,叫做这个点到这条直线的距离,即选项A错误;
    在同一平面内,互相垂直的两条直线一定相交,即选项B错误;
    直线AB外一点P与直线上各点连接而成的所有线段中最短线段的长是7cm,则点P到直线AB的距离是7cm,即选项C正确;
    在同一平面内,过一点有且只有一条直线垂直于已知直线,即选项D错误;
    故选:C.
    【点睛】
    本题考查了点和直线的知识;解题的关键是熟练掌握点到直线距离、相交线、垂线的性质,从而完成求解.
    9、D
    【分析】
    根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.
    【详解】
    解:垂线段最短,
    点到直线的距离,
    故选:D.
    【点睛】
    本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.
    10、D
    【分析】
    根据方向角的概念,和平行线的性质求解.
    【详解】
    解:如图:

    ∵AF∥DE,
    ∴∠ABE=∠FAB=43°,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠CBD=180°﹣90°﹣43°=47°,
    ∴C地在B地的北偏西47°的方向上.
    故选:D.
    【点睛】
    本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.
    二、填空题
    1、平行
    【分析】
    根据∠2:∠3=1:5,求出的度数,然后根据同位角相等两直线平行进行解答即可.
    【详解】
    解:∵∠2:∠3=1:5,
    ∴∠2=30°,
    ∴∠1=∠2,
    ∴a∥b,
    故答案为:平行.
    【点睛】
    本题考查了角的和差倍分求角度以及平行的判定,根据题意求出∠2=30°是解本题的关键.
    2、> 3 2 垂线段
    【分析】
    根据点到直线的距离的定义,大角对大边,垂线段最短进行求解即可.
    【详解】
    解:∵∠AOB=90°,
    ∴AO⊥BO,AB>BO,
    ∵OA=3cm,OB=2cm,
    ∴A点到OB的距离是3cm,点B到OA的距离是2cm,O点到AB上各点连接的所有线段中垂线段最短,
    故答案为:>,3,2,垂线段.
    【点睛】
    本题主要考查了点到直线的距离,大角对大边,垂线段最短,解题的关键在于能够熟知相关定义.
    3、a1∥a100;
    【分析】
    从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1∥a4,a1∥a5;a1⊥a2,a1 ⊥a3;且a1与an的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1∥a100.
    【详解】
    解:在同一平面内有直线两直线的位置,
    关系是相交或平行,如图所示:

    ∵a1⊥a2,a2∥a3,
    ∴a1 ⊥a3,
    又∵a3⊥a4,
    ∴a1∥a4,
    又∵a4∥as,
    ∴a1∥a5,
    又∵a5⊥a6,
    ∴a1⊥a6,
    又∵a6∥a7,
    ∴a1⊥a7,

    从以上的规律可知:a1与an的位置关系是4为周期进行循环,
    若下角标的余数为0或1时与a1平行;若下角标的余数为2或3时与a1垂直.
    ∵100=4×25,
    ∴a1∥a100,
    故答案为:a1∥a100.
    【点睛】
    本题综合考查了平行线的性质,同一平面内图形的变化规律,倍数和余数的运用等相关知识点,重点是掌握平行线的性质,难点是掌握由特殊到一般图形变化规律在几何中的运用.
    4、130°
    【分析】
    根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.
    【详解】
    解:∵AB、CD相交于点O,
    ∴∠BOD=∠AOC=40°.
    ∵OD平分∠BOF,
    ∴∠DOF=∠BOD=40°,
    ∵OE⊥CD,
    ∴∠EOD=90°,
    ∴∠EOF=∠EOD+∠DOF=130°.
    故答案为130°.
    【点睛】
    本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.
    5、15°
    【分析】
    根据平行线的性质和三角板的特殊角的度数解答即可.
    【详解】
    解:如图:

    ∵ABCD,
    ∴∠BAD=∠D=30°,
    ∵∠BAE=45°,
    ∴∠α=45°﹣30°=15°,
    故答案为:15°.
    【点睛】
    此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.
    三、解答题
    1、(1)画图见解析;(2)画图见解析;(3)画图见解析,
    【分析】
    (1)连接即可;
    (2)过两点画直线即可,以为端点画射线即可;
    (3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.
    【详解】
    解:(1)如图,线段AB即为所求作的线段,
    (2)如图,直线AC和射线BC即为所求作的直线与射线,
    (3)如图,BD即为所画的垂线,

    点A到直线BD的距离是线段的长度.
    故答案为:
    【点睛】
    本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.
    2、(1);(2)
    【分析】
    (1)由∠AOC:∠AOD=3:7,先求解 再利用对顶角相等求解 结合角平分线的定义可得答案;
    (2)先求解 再利用平角的定义可得答案.
    【详解】
    解:(1) ∠AOC:∠AOD=3:7,


    OE平分∠BOD,

    (2)


    【点睛】
    本题考查的是角平分线的定义,对顶角的性质,平角的定义,垂直的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
    3、基础问题:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;类比探究:∠AGD=∠A-∠D;应用拓展:42°.
    【分析】
    基础问题:由MN∥AB,可得∠A=∠AGM,由MN∥CD,可得∠D=∠DGM,则∠AGD=∠AGM+∠DGM=∠A+∠D;
    类比探究:如图所示,过点G作直线MN∥AB,同理可得∠A=∠AGM,∠D=∠DGM,则∠AGD=∠AGM-∠DGM=∠A-∠D.
    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,由MN∥AB,PQ∥AB,得到∠BAG=∠AGM,∠BAH=∠AHP,由MN∥CD,PQ∥CD,得到∠CDG=∠DGM,∠CDH=∠DHP,再由∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,可得∠GDH=44°,∠DHP=22°,则∠CDG=66°,∠AHP=54°,∠DGM=66°,∠BAH=54°,再由AH平分∠BAG,即可得到∠AGM=108°,则∠AGD=∠AGM-∠DGM=42°.
    【详解】
    解:基础问题:过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD(平行于同一条直线的两条直线平行),
    ∵MN∥AB,
    ∴∠A=∠AGM(两直线平行,内错角相等),
    ∵MN∥CD,
    ∴∠D=∠DGM(两直线平行,内错角相等),
    ∴∠AGD=∠AGM+∠DGM=∠A+∠D.
    故答案为:平行于同一条直线的两条直线平行;∠AGM;两直线平行,内错角相等;∠DGM,两直线平行,内错角相等;
    类比探究:如图所示,过点G作直线MN∥AB,
    又∵AB∥CD,
    ∴MN∥CD,
    ∵MN∥AB,
    ∴∠A=∠AGM,
    ∵MN∥CD,
    ∴∠D=∠DGM,
    ∴∠AGD=∠AGM-∠DGM=∠A-∠D.

    应用拓展:如图所示,过点G作直线MN∥AB,过点H作直线PQ∥AB,
    又∵AB∥CD,
    ∴MN∥CD,PQ∥CD
    ∵MN∥AB,PQ∥AB,
    ∴∠BAG=∠AGM,∠BAH=∠AHP,
    ∵MN∥CD,PQ∥CD,
    ∴∠CDG=∠DGM,∠CDH=∠DHP,
    ∵∠GDH=2∠HDC,∠HDC=22°,∠AHD=32°,
    ∴∠GDH=44°,∠DHP=22°,
    ∴∠CDG=66°,∠AHP=54°,
    ∴∠DGM=66°,∠BAH=54°,
    ∵AH平分∠BAG,
    ∴∠BAG=2∠BAH=108°,
    ∴∠AGM=108°,
    ∴∠AGD=∠AGM-∠DGM=42°.

    【点睛】
    本题主要考查了平行线的性质,平行公理,解题的关键在于能够熟练掌握平行线的性质.
    4、(1)见解析;(2)见解析;(3)DE
    【分析】
    (1)根据平行线的判定条件:同位角相同,两直线平行,进行作图即可;
    (2)根据垂线的定义作图即可;
    (3)根据点到直线的距离的定义求解即可.
    【详解】
    解:(1)如图所示,点N即为所求;

    (2)如图所示,点E即为所求;

    (3)由题意可知:点E到直线BC的距离是线段DE的长度,
    故答案为:DE.
    【点睛】
    本题主要考查了点到直线的距离,平行线的判定,作垂线,画平行线,解题的关键在于能够熟练掌握相关知识进行求解.
    5、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
    【分析】
    利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
    【详解】
    解:∵∠A=120°,∠FEC=120°(已知),
    ∴∠A=∠FEC(等量代换),
    ∴AB∥EF(同位角相等,两直线平行),
    又∵∠1=∠2(已知),
    ∴AB∥CD(内错角相等,两直线平行),
    ∴EF∥CD(平行于同一条直线的两直线互相平行),
    ∴∠FDG=∠EFD(两直线平行,内错角相等),
    故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
    【点睛】
    本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.
    6、(1)两角相等,见解析;(2)180°
    【分析】
    (1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;
    (2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;
    【详解】
    (1)两角相等,理由如下:
    ∵DE∥AC,
    ∴∠A=∠BED(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠EDF=∠BED(两直线平行,内错角相等),
    ∴∠A=∠EDF(等量代换).
    (2)∵DE∥AC,
    ∴∠C=∠EDB(两直线平行,同位角相等).
    ∵DF∥AB,
    ∴∠B=∠FDC(两直线平行,同位角相等).
    ∵∠EDB+∠EDF+∠FDC=180°,
    ∴∠A+∠B+∠C=180°(等量代换).
    【点睛】
    本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
    7、100°
    【分析】
    由垂直的定义结合两角的比值可求解∠BOD的度数,即可求得∠BOE的度数,再利用角平分线的定义可求得∠BOC的度数,进而可求解∠COD的度数.
    【详解】
    解:∵OA⊥OB,
    ∴∠AOB=90°,
    ∵∠AOD:∠BOD=7:2,
    ∴∠BOD=∠AOB=20°,
    ∴∠BOE=180°﹣∠BOD=160°.
    ∵OC平分∠BOE,
    ∴∠BOC=∠BOE=80°,
    ∴∠COD=∠BOC+∠BOD=80°+20°=100°.
    【点睛】
    本题考查了角度的计算,垂直的定义,角平分线的定义,结合垂直的定义和两角的比值求出∠BOD的度数是解题的关键.
    8、证明见解析
    【分析】
    由,证明,再证,最后根据对顶角相等,可得答案.
    【详解】
    证明:∵,
    ∴,
    ∴∠ABD=∠D,
    又∵,
    ∴∠ABD=∠C,
    ∴,
    ∴,
    ∵,
    ∴.
    【点睛】
    本题主要考查了平行线的性质与判定,对顶角的性质,解题的关键在于能够熟练掌握相关知识进行求解.
    9、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【分析】
    (1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;
    (2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.
    【详解】
    解:(1)∵EO⊥AB,
    ∴∠BOE=90°,
    ∴∠COE+∠BOD=90°,
    ∵∠EOC:∠BOD=7:11,
    ∴∠COE=35°,∠BOD=55°,
    ∴∠DOE=∠BOD+∠BOE=145°;
    (2)∵MN⊥CD,
    ∴∠COM=90°,
    ∴∠EOM=∠COE+∠COM=125°,
    ∵∠BOD=55°,
    ∴∠BOC=180°-∠BOD=125°,
    ∴∠AOD=∠BOC=125°,
    ∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.
    【点睛】
    本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.
    10、(1)见解析;(2)①或;②
    【分析】
    (1)根据垂直的性质即可求解;
    (2)①分当OE平分时,和OF平分时根据旋转的特点求出旋转的角度即可求解;
    ②根据,可知OP在内部,根据题意作图,分别表示出, ,故可求解.
    【详解】
    解:(1)∵,
    ∴,
    ∴.
    (2)①∵OB平分,,
    ∴.
    情况1:当OE平分时,
    则旋转之后,
    ∴OB旋转的角度为,
    ∴,.
    情况2:当OF平分时,同理可得,OB旋转的角度为,
    ∴,.
    综上所述,或.
    ②∵,
    ∴OP在内部,如图所示,

    由题意知,,
    ∴,∵OM平分,
    ∴,
    ∴,
    ∴.
    【点睛】
    此题主要考查角度的综合判断与求解,解题的关键是根熟知垂直的性质、角平分线的性质及角度的和差关系.

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后作业题,共28页。

    初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题:

    这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试当堂检测题,共27页。试卷主要包含了直线,下列说法中,正确的是等内容,欢迎下载使用。

    2021学年第十三章 相交线 平行线综合与测试精练:

    这是一份2021学年第十三章 相交线 平行线综合与测试精练,共26页。试卷主要包含了如图木条a,下列关于画图的语句正确的是.,如图,已知,,平分,则等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map