![难点详解沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练试题(含答案解析)第1页](http://www.enxinlong.com/img-preview/2/3/12710929/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练试题(含答案解析)第2页](http://www.enxinlong.com/img-preview/2/3/12710929/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解沪教版(上海)七年级数学第二学期第十三章相交线 平行线专项训练试题(含答案解析)第3页](http://www.enxinlong.com/img-preview/2/3/12710929/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中沪教版 (五四制)第十三章 相交线 平行线综合与测试复习练习题
展开
这是一份初中沪教版 (五四制)第十三章 相交线 平行线综合与测试复习练习题,共28页。试卷主要包含了如图,直线AB∥CD,直线AB,如图,不能推出a∥b的条件是,如图,∠1与∠2是同位角的是等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题正确的是( )(1)两条直线被第三条直线所截,同位角相等;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;(3)平移前后连接各组对应点的线段平行且相等;(4)从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离;(5)在同一平面内,三条直线的交点个数有三种情况.A.0个 B.1个 C.2个 D.3个2、如图,将一张长方形纸带沿EF折叠,点C、D的对应点分别为C'、D'.若∠DEF=α,用含α的式子可以将∠C'FG表示为( )A.2α B.90°+α C.180°﹣α D.180°﹣2α3、下列说法:(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是( )A.0个 B.1个 C.2个 D.3个4、如图,一辆快艇从P处出发向正北航行到A处时向左转50°航行到B处,再向右转80°继续航行,此时航行方向为( )A.西偏北50° B.北偏西50° C.东偏北30° D.北偏东30°5、如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是( )A.3.5 B.4 C.5 D.5.56、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )A.139° B.141° C.131° D.129°7、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )A.30° B.40° C.50° D.60°8、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°9、如图,∠1与∠2是同位角的是( ) ① ② ③ ④A.① B.② C.③ D.④10、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )A.80° B.90° C.100° D.110°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果ab,a⊥c,那么b⊥c; ②如果ba,ca,那么bc;③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么bc.其中正确的是__.(填写序号)2、如图,∠1还可以用______ 表示,若∠1=62°,那么∠BCA=____ 度.3、如图,直线AB与CD被直线AC所截得的内错角是 ___.4、将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于_____.5、如图,口渴的马儿在点处想尽快地到达小河边喝水,它应该沿着线路奔跑,依据是___________.三、解答题(10小题,每小题5分,共计50分)1、根据要求画图或作答:如图所示,已知A、B、C三点.(1)连结线段AB;(2)画直线AC和射线BC;(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度.2、如图,在由相同小正方形组成的网格中,点A、B、C、O都在网格的格点上,∠AOB=90°,射线OC在∠AOB的内部.(1)用无刻度的直尺作图:①过点A作ADOC;②在∠AOB的外部,作∠AOE,使∠AOE=∠BOC;(2)在(1)的条件下,探究∠AOC与∠BOE之间的数量关系,并说明理由.3、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.4、如图,直线AB、CD相交于点O,∠EOC=90°,OF是∠AOE的角平分线,∠COF=34°,求∠BOD的度数.5、(感知)已知:如图①,点E在AB上,且CE平分,.求证:.将下列证明过程补充完整:证明:∵CE平分(已知),∴__________(角平分线的定义),∵(已知),∴___________(等量代换),∴(______________).(探究)已知:如图②,点E在AB上,且CE平分,.求证:.(应用)如图③,BE平分,点A是BD上一点,过点A作交BE于点E,,直接写出的度数.6、如图,①过点Q作QD⊥AB,垂足为点D;②过点P作PE⊥AB,垂足为点E;③过点Q作QF⊥AC,垂足为点F;④连P,Q两点;⑤P,Q两点间的距离是线段______的长度;⑥点Q到直线AB的距离是线段______的长度;⑦点Q到直线AC的距离是线段______的长度;⑧点P到直线AB的距离是线段______的长度.7、已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3= ( ).∵∠3=∠4(已知),∴∠4= ( ).∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF( ).即∠BAF= .∴∠4=∠BAF.( ).∴AB∥CD( ).4.如图,点O是直线AB上的一点,∠BOC:∠AOC=1:2,OD平分∠BOC,OE⊥OD于点O.(1)求∠BOC的度数;(2)试说明OE平分∠AOC.8、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)9、下列语句中,有一个是错误的,其余三个都是正确的:①直线EF经过点C; ②点A在直线l外;③直线AB的长为5 cm; ④两条线段m和n相交于点P.(1)错误的语句为________(填序号).(2)按其余三个正确的语句,画出图形.10、如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由. -参考答案-一、单选题1、B【分析】根据平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系逐个判断即可得.【详解】解:(1)两条平行线被第三条直线所截,同位角相等;则原命题错误;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;则原命题正确;(3)平移前后连接各组对应点的线段平行(或在同一条直线上)且相等;则原命题错误;(4)从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离;则原命题错误;(5)在同一平面内,三条直线的交点个数可能为0个或1个或2个或3个,共有四种情况;则原命题错误;综上,命题正确的是1个,故选:B.【点睛】本题考查了平行线的性质、垂直的定义、平移的性质、点到直线的距离的定义、直线的位置关系,熟练掌握各定义和性质是解题关键.2、D【分析】由平行线的性质得,,由折叠的性质得,计算即可得出答案.【详解】∵四边形ABCD是矩形,∴,∴,,∵长方形纸带沿EF折叠,∴,∴.故选:D.【点睛】本题考查平行线的性质与折叠的性质,掌握平行线的性质以及折叠的性质是解题的关键.3、B【分析】根据平面内相交线和平行线的基本性质逐项分析即可.【详解】解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误; (2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;(5)两点之间,线段最短,故原说法错误;故选:B.【点睛】本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.4、D【分析】由,证明,再利用角的和差求解 从而可得答案.【详解】解:如图,标注字母, , ∴, 此时的航行方向为北偏东30°, 故选:D.【点睛】本题考查的是平行线的性质,角的和差运算,掌握“两直线平行,同位角相等”是解本题的关键.5、D【分析】直接利用垂线段最短以及结合已知得出AP的取值范围进而得出答案.【详解】∵过点A作AB⊥l于点B,在直线l上取一点C,连接AC,使AC=AB,P在线段BC上连接AP.∵AB=3,∴AC=5,∴3≤AP≤5,故AP不可能是5.5,故选:D.【点睛】本题考查了垂线段最短,正确得出AP的取值范围是解题的关键.6、A【分析】如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..【详解】解:如图,∵AECF,∴∠A=∠CGB=41°,∵ABCD,∴∠C=180°-∠CGB=139°.故选:A【点睛】本题考查了平行线的性质,熟知平行线的性质是解题关键.7、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.8、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.9、B【分析】同位角就是两个角都在截线的同旁,又分别处在被截线的两条直线的同侧位置的角.【详解】根据同位角的定义可知②中的∠1与∠2是同位角;故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.10、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵ABDC,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.二、填空题1、①②④【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果ab,a⊥c,那么b⊥c,正确;②如果ba,ca,那么bc,正确;③如果b⊥a,c⊥a,那么bc,错误;④如果b⊥a,c⊥a,那么bc,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.2、 【分析】根据角的表示和邻补角的性质计算即可;【详解】∠1还可以用表示;∵∠1=62°,,∴;故答案是:;.【点睛】本题主要考查了角的表示和邻补角的性质,准确计算是解题的关键.3、∠2与∠4【分析】根据内错角的特点即可求解.【详解】由图可得直线AB与CD被直线AC所截得的内错角是∠2与∠4故答案为:∠2与∠4.【点睛】此题主要考查内错角的识别,解题的关键是熟知内错角的特点.4、50°【分析】根据平行线的性质计算即可;【详解】解:如图所示,由折叠可得,∠3=∠1=65°,∴∠CEG=130°,∵AB∥CD,∴∠2=180°﹣∠CEG=180°﹣130°=50°.故答案为:50°.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.5、垂线段最短【分析】根据点到直线,垂线段最短,即可求解.【详解】解:因为 垂直于小河边所在直线,所以它应该沿着线路奔跑,依据是垂线段最短.故答案为:垂线段最短.【点睛】本题主要考查了点与直线的关系,熟练掌握点到直线,垂线段最短是解题的关键.三、解答题1、(1)画图见解析;(2)画图见解析;(3)画图见解析,【分析】(1)连接即可;(2)过两点画直线即可,以为端点画射线即可;(3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.【详解】解:(1)如图,线段AB即为所求作的线段,(2)如图,直线AC和射线BC即为所求作的直线与射线,(3)如图,BD即为所画的垂线,点A到直线BD的距离是线段的长度.故答案为:【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.2、(1)①见解析;②见解析;(2)∠AOC+∠BOE=180°,理由见解析【分析】(1)①取格点D,然后作直线AD即可;②取格点E,然后作射线OE即可.(2)根据角的和差定义证明即可.【详解】解:(1)①如图,直线AD即为所求作.②∠AOE即为所求作.(2)∠AOC+∠BOE=180°.理由:∵∠AOC=90°﹣∠BOC,∠BOE=90°+∠AOE,∠BOC=∠AOE,∴∠AOC+∠BOE=90°﹣∠AOE+90°+∠AOE=180°.【点睛】本题考查了格点作图以及角的大小关系,明确题意、熟练掌握上述基本知识是解题关键.3、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.4、【分析】根据、可得,OF是∠AOE的角平分线,可得,所以,再根据对顶角相等,即可求解.【详解】解:∵、,∴,∵OF是∠AOE的角平分线,∴,∴,∴,【点睛】此题考查了角平分线的有关计算,解题的关键是掌握角平分线的定义以及角之间的和差关系.5、【感知】ECD;ECD;内错角相等,两直线平行;【探究】见解析;【应用】40°【分析】感知:读懂每一步证明过程及证明的依据,即可完成解答;探究:利用角平分线的性质得∠2=∠DCE,由平行线性质可得∠DCE=∠1,等量代换即可解决;应用:利用角平分线的性质得∠ABE=∠CBE,由平行线性质可得∠CBE=∠E,等量代换得∠E=∠ABE,由即可求得∠ABC的度数,从而可求得∠E的度数.【详解】感知∵CE平分(已知),∴ECD(角平分线的定义),∵(已知),∴ECD(等量代换),∴(内错角相等,两直线平行).故答案为:ECD;ECD;内错角相等,两直线平行探究∵CE平分,∴,∵,∴,∵.应用∵BE平分∠DBC,∴,∵AE∥BC,∴∠CBE=∠E,∠BAE+∠ABC=180゜,∴∠E=∠ABE,∵,∴∠ABC=80゜∴∴【点睛】本题考查平行线的判定与性质,角平分线的性质,掌握平行线的性质与判定是关键.6、①②③④作图见解析;⑤PQ;⑥QD;⑦QF;⑧PE【分析】由题意①②③④根据题目要求即可作出图示,⑤⑥⑦⑧根据两点之间距离及点到直线的距离的定义即可得出答案.【详解】①②③④作图如图所示;⑤根据两点之间距离即可得出P,Q两点间的距离是线段PQ的长度;⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度;⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度;⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度.【点睛】本题主要考查基本作图和两点之间距离及点到直线的距离,熟练掌握相关概念与作图方法是解题的关键.7、(1)∠BOC=60°(2)见解析【分析】(1)根据∠AOB是平角,∠BOC:∠AOC=1:2即可求解;(2)由角平分线的定义和相加等于90°的两个角互余、等角的余角相等来分析即可.【详解】(1)∵∠AOB=∠BOC+∠AOC=180°,又∠BOC:∠AOC=1:2,∴∠AOC=2∠BOC,∴∠BOC+2∠BOC=180°,∴∠BOC=60°;(2)∵OD平分∠BOC,∴∠BOD=∠DOC,∵∠DOC+∠COE=90°,∠AOB是平角,∴∠AOE+∠BOD=90°,∴∠AOE=∠COE即OE平分∠AOC.【点睛】本题考查了角的计算和角平分线的定义,垂直的定义,正确理解角平分线的定义,余角的性质以及平角的定义是解题的关键.8、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;【分析】(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.【详解】(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.【点睛】本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.9、(1)③;(2)见解析【分析】(1)点与直线的位置关系,直线的定义,两条直线的位置关系,逐项判断即可求解;(2)根据点与直线的位置关系,两条直线的位置关系,画出图形,即可求解.【详解】解:(1)①直线EF经过点C,故本说法正确;②点A在直线l外,故本说法正确;③因为直线向两端无限延伸,所以长度无法测量,故本说法错误;④两条线段m和n相交于点P,故本说法正确;所以错误的语句为③; (2)图形如图所示: 【点睛】本题主要考查了点与直线的位置关系,直线的定义,两条直线的位置关系,熟练掌握相关知识点是解题的关键.10、(1)150°;(2)12或24;(3)存在,9秒、27秒【分析】(1)根据∠AOB=180°−∠AOM−∠BON计算即可.(2)先求解重合时,再分两种情况讨论:当0≤t≤18时;当18≤t≤30时;再构建方程求解即可.(3)分两种情形,当0≤t≤18时;当18≤t≤30时;分别构建方程求解即可.【详解】解:(1)当t=3时,∠AOB=180°−4°×3−6°×3=150°.(2)当重合时, 解得: 当0≤t≤18时: 4t+6t=120解得: 当18≤t≤30时:则 4t+6t=180+60,解得 t=24,答:当∠AOB达到60°时,t的值为6或24秒.(3) 当0≤t≤18时,由 180−4t−6t=90,解得t=9,当18≤t≤30时,同理可得: 4t+6t=180+90 解得t=27. 所以大于的答案不予讨论,答:在旋转过程中存在这样的t,使得射线OB与射线OA垂直,t的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试课后练习题,共27页。试卷主要包含了如图,能与构成同位角的有,下列命题正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第十三章 相交线 平行线综合与测试巩固练习,共28页。试卷主要包含了如图,∠1与∠2是同位角的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试测试题,共28页。试卷主要包含了如图,在等内容,欢迎下载使用。