


北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题
展开
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共33页。试卷主要包含了如图,M等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
2、如图,在矩形ABCD中,点E是BC的中点,连接AE,点F是AE的中点,连接DF,若AB=9,AD,则四边形CDFE的面积是( )
A. B. C. D.54
3、下列图形中不是中心对称图形的是( )
A. B. C. D.
4、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )
A. B. C. D.
5、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )
A.梯形 B.菱形 C.矩形 D.正方形
6、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为( )
A.180° B.360°
C.540° D.不能确定
7、如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为( )
A.7 B. C.8 D.9
8、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )
A. B. C. D.
9、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120° B.118° C.110° D.108°
10、四边形的内角和与外角和的数量关系,正确的是( )
A.内角和比外角和大180° B.外角和比内角和大180°
C.内角和比外角和大360° D.内角和与外角和相等
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在矩形ABCD中,AB=2,AD=2,E为BC边上一动点,F、G为AD边上两个动点,且∠FEG=30°,则线段FG的长度最大值为 _____.
2、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点P、A、B组成一个等腰三角形时,△PAB的面积为___________.
3、若一个多边形的一条对角线把它分成两个四边形,则这个多边形的内角和是_____度.
4、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 _____.
5、正方形的一条对角线长为4,则这个正方形面积是_________.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.
(1)若,求线段AC的长;
(2)求证:.
2、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三边长都是有理数的直角三角形;
(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;
(3)在图3中,画一个正方形,使它的面积是10.
3、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE
4、如图,在平行四边形中,,..点在上由点向点出发,速度为每秒;点在边上,同时由点向点运动,速度为每秒.当点运动到点时,点,同时停止运动.连接,设运动时间为秒.
(1)当为何值时,四边形为平行四边形?
(2)设四边形的面积为,求与之间的函数关系式.
(3)当为何值时,四边形的面积是四边形的面积的四分之三?求出此时的度数.
(4)连接,是否存在某一时刻,使为等腰三角形?若存在,请求出此刻的值;若不存在,请说明理由.
5、已知长方形ABCO,O为坐标原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PC=m.
(1)已知点D在第一象限且是直线y=2x+6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为 ,此时若△APD是等腰直角三角形,求点D的坐标;
(2)直线y=2x+b过点(3,0),请问在该直线上,是否存在第一象限的点D使△APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由.
-参考答案-
一、单选题
1、C
【分析】
根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】
解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、是轴对称图形,不是中心对称图形,不符合题意;
C、既是轴对称图形,又是中心对称图形,符合题意;
D、是轴对称图形,不是中心对称图形,不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
2、C
【分析】
过点F作,分别交于M、N,由F是AE中点得,根据,计算即可得出答案.
【详解】
如图,过点F作,分别交于M、N,
∵四边形ABCD是矩形,
∴,,
∵点E是BC的中点,
∴,
∵F是AE中点,
∴,
∴.
故选:C.
【点睛】
本题考查矩形的性质与三角形的面积公式,掌握是解题的关键.
3、B
【分析】
根据中心对称图形的概念求解.
【详解】
解:A、是中心对称图形,故本选项不合题意;
B、不是中心对称图形,故本选项符合题意;
C、是中心对称图形,故本选项不合题意;
D、是中心对称图形,故本选项不合题意.
故选:B.
【点睛】
本题考查了中心对称图形的知识,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.
4、B
【分析】
根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.
【详解】
解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.
∵一个直角三角形的周长为3+,
∴AB+BC=3+-2=1+.
等式两边平方得(AB+BC)2= (1+) 2,
即AB2+BC2+2AB•BC=4+2,
∵AB2+BC2=AC2=4,
∴2AB•BC=2,AB•BC=,
即三角形的面积为×AB•BC=.
故选:B.
【点睛】
本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.
5、B
【分析】
根据题意得到,然后根据菱形的判定方法求解即可.
【详解】
解:由题意可得:,
∴四边形是菱形.
故选:B.
【点睛】
此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法.菱形的判定定理:①四条边都相等四边形是菱形;②一组邻边相等的平行四边形是菱形;③对角线垂直的平行四边形是菱形.
6、B
【分析】
设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.
【详解】
解:设BE与DF交于点M,BE与AC交于点N,
∵ ,
∴ ,
∵,
∴ .
故选:B
【点睛】
本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.
7、C
【分析】
根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长.
【详解】
解:∵∠AEB=90,D是边AB的中点,AB=6,
∴DE=AB=3,
∵EF=1,
∴DF=DE+EF=3+1=4.
∵D是边AB的中点,点F是边BC的中点,
∴DF是ABC的中位线,
∴AC=2DF=8.
故选:C.
【点睛】
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键.
8、B
【分析】
根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.
【详解】
解:∵∠ACB=90°,∠B=30°,
∴∠BAC=90°-30°=60°,
∵AD平分∠BAC,
∴∠DAB=∠BAC=30°,
∴∠DAB=∠B,
∴AD=BD=a,
在Rt△ACB中,E是AD中点,
∴CE=AD=,
故选: B.
【点睛】
本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.
9、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
10、D
【分析】
直接利用多边形内角和定理分别分析得出答案.
【详解】
解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;
D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.
故选:D.
【点睛】
本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.
二、填空题
1、
【分析】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形,故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大,则由矩形ABCD中,AB=2,AD=2可知,∠ABD=60°,故∠ABF=60°-30°=30°,则AF=,则FG=AD-AF=.
【详解】
如图所示,在中,FG边的高为AB=2,∠FEG=30°,为定角定高的三角形
故当E与B点或C点重合,G与D点重合或F与A点重合时,FG的长度最大
∵矩形ABCD中,AB=2,AD=2
∴∠ABD=60°
∴∠ABF=60°-30°=30°
∴AF=
∴FG=AD-AF=.
故答案为:.
【点睛】
本题考查了四边形中动点问题,图解法数学思想依据是数形结合思想. 它的应用能使复杂问题简单化、 抽象问题具体化. 特殊四边形的几何问题, 很多困难源于问题中的可动点. 如何合理运用各动点之间的关系,同学们往往缺乏思路, 常常导致思维混乱.实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式, 确定运动变化过程中的数量关系, 图形位置关系, 分类画出符合题设条件的图形进行讨论, 就能找到解决的途径, 有效避免思维混乱.
2、或或3
【分析】
过B作BM⊥AC于M,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①AB=BP=3,②AB=AP=3,③AP=BP,分别画出图形,再求出面积即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,
由勾股定理得:,
有三种情况:
①当AB=BP=3时,如图1,过B作BM⊥AC于M,
S△ABC=,
,
解得:,
∵AB=BP=3,BM⊥AC,
∴,
∴AP=AM+PM=,
∴△PAB的面积=;
②当AB=AP=3时,如图2,
∵BM=,
∴△PAB的面积S=;
③作AB的垂直平分线NQ,交AB于N,交AC于P,如图3,则AP=BP,BN=AN=,
∵四边形ABCD是矩形,NQ⊥AC,
∴PN∥BC,
∵AN=BN,
∴AP=CP,
∴,
∴△PAB的面积;
即△PAB的面积为或或3.
故答案为:或或3.
【点睛】
本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.
3、720
【分析】
根据一个多边形被一条对角线分成两个四边形,可得多边形的边数,根据多边形的内角和定理,可得答案.
【详解】
解:由题意,得
两个四边形有一条公共边,得
多边形是,
由多边形内角和定理,得
.
故答案为:720.
【点睛】
本题考查了多边形的对角线,利用了多边形内角和定理,解题的关键是注意对角线是两个四边形的公共边.
4、
【分析】
由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.
【详解】
解:∵正方形中B与D关于AC对称,
∴PB=PD,
∴PD+PE=PB+PE=BE,此时PD+PE最小,
∵正方形ABCD的面积为18,△ABE是等边三角形,
∴BE=3,
∴PD+PE最小值是3,
故答案为:3.
【点睛】
本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.
5、8
【分析】
正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积.
【详解】
解:设边长为,对角线为
故答案为:.
【点睛】
本题考察了正方形的性质以及勾股定理.解题的关键在于求解正方形的边长.
三、解答题
1、(1);(2)见解析
【分析】
(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;
(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.
【详解】
(1)
,
;
(2)连接DE
,
,
,,
,
,
.
【点睛】
本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.
2、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;
(2)如图, ,,利用勾股定理逆定理即可得到△ABC是直角三角形;
(3)如图, ,则,∠ABC=90°,即可得到四边形ABCD是正方形,.
【详解】
解:(1)如图所示,AB=4,BC=3,,
∴,
∴△ABC是直角三角形;
(2)如图所示, ,
∴,
∴△ABC是直角三角形;
(3)如图所示,, ,
∴,
∴∠ABC=90°,
∴四边形ABCD是正方形,
∴.
【点睛】
本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.
3、见解析
【分析】
利用矩形性质以及等边对等角,证明,最后利用边角边即可证明.
【详解】
解:四边形ABCD是矩形,
,,
,
,
,
在和中,
.
【点睛】
本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键.
4、(1);(2)y=S四边形ABPQ=2t+32(0<t≤8);(3)t=8,;(4)当t=4或 或时,为等腰三角形,理由见解析.
【分析】
(1)利用平行四边形的对边相等AQ=BP建立方程求解即可;
(2)先构造直角三角形,求出AE,再用梯形的面积公式即可得出结论;
(3)利用面积关系求出t,即可求出DQ,进而判断出DQ=PQ,即可得出结论;
(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.
【详解】
解:(1)∵在平行四边形中,,,
由运动知,AQ=16−t,BP=2t,
∵四边形ABPQ为平行四边形,
∴AQ=BP,
∴16−t=2t
∴t=,
即:t=s时,四边形ABPQ是平行四边形;
(2)过点A作AE⊥BC于E,如图,
在Rt△ABE中,∠B=30°,AB=8,
∴AE=4,
由运动知,BP=2t,DQ=t,
∵四边形ABCD是平行四边形,
∴AD=BC=16,
∴AQ=16−t,
∴y=S四边形ABPQ=(BP+AQ)•AE=(2t+16−t)×4=2t+32(0<t≤8);
(3)由(2)知,AE=4,
∵BC=16,
∴S四边形ABCD=16×4=64,
由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),
∵四边形ABPQ的面积是四边形ABCD的面积的四分之三
∴2t+32=×64,
∴t=8;
如图,
当t=8时,点P和点C重合,DQ=8,
∵CD=AB=8,
∴DP=DQ,
∴∠DQC=∠DPQ,
∴∠D=∠B=30°,
∴∠DQP=75°;
(4)①当AB=BP时,BP=8,
即2t=8,t=4;
②当AP=BP时,如图,
∵∠B=30°,
过P作PM垂直于AB,垂足为点M,
∴BM=4,,
解得:BP=,
∴2t=,
∴t=
③当AB=AP时,同(2)的方法得,BP=,
∴2t=,
∴t=
所以,当t=4或 或时,△ABP为等腰三角形.
【点睛】
此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.
5、(1)点D(4,14);(2)存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
【分析】
(1)过点D作DE⊥y轴于E,PF⊥y轴于F,设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,可得点D(n,2n+6),根据△APD是等腰直角三角形,可得∠EDA=∠FAP,可证△EDA≌△FAP(AAS),可得AE=PF,ED=FA,再证四边形AFPB为矩形,得出点D(n,14),根据点D在直线y=2x+6上,求出n=4即可;
(2)直线y=2x+b过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,证明△EDA≌△FPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当∠APD=90°,AP=DP,△ADP为等腰直角三角形,先证△ABP≌△PFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证△APF≌△DAE(AAS),得出求解方程即可
【详解】
解:(1)过点D作DE⊥y轴于E,PF⊥y轴于F,
设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,
∴x=n,y=2n+6,
∴点D(n,2n+6),
∵△APD是等腰直角三角形,
∴DA=AP,∠DAP=90°,
∴∠DAE+∠FAP=180°-∠DAP=90°,
∵DE⊥y轴,PF⊥y轴,
∴∠DEA=∠AFP=90°,
∴∠EDA+∠DAE=90°,
∴∠EDA=∠FAP,
在△EDA和△FAP中,
,
∴△EDA≌△FAP(AAS),
∴AE=PF,ED=FA,
∵四边形OABC为矩形,B的坐标为(8,6),
∴AB=OC=8,OA=BC=6,∠FAB=∠ABP=90°,
∵∠AFP=90°,
∴四边形AFPB为矩形,
∴PF=AB=8,
∴EA=FP=8,
∴OE=OA+AE=6+8=14,
∴点D(n,14),
∵点D在直线y=2x+6上,
∴14=2n+6,,
∴n=4,
∴点D(4,14);
(2)直线y=2x+b过点(3,0),
∴0=6+b,
∴b =-6,
∴直线y=2x-6,
设点D(x, 2x-6),
过点D作EF⊥y轴,交y轴于E,交CB延长线于F,
要使△ADP为等腰直角三角形,
当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,
∴∠ADE+∠FDP=180°-∠ADP=90°,
∵DE⊥y轴,PF⊥y轴,
∴∠DEA=∠AFP=90°,
∴∠EDA+∠DAE=90°,
∴∠EAD=∠FDP,
在△EDA和△FPD中,
,
∴△EDA≌△FPD(AAS),
∴AE=DF=2x-6-8=2x-14,ED=FP=x,
∵四边形OABC为矩形,AB=OC=8,OA=BC=6,
∴∠OCF=90°,
∴四边形OCFE为矩形,EF=OC=8,
∴DE+DF=x+2x-14=8,
解得x=,
∴,
∴点D;
当∠APD=90°,AP=DP,△ADP为等腰直角三角形,
∴∠APB+∠DPF=90°,
过D作DF⊥射线CB于F,
∴∠DFP=90°,
∵四边形OABC为矩形,
∴AB=OC=8,OA=CB=6,∠ABP=90°,
∴∠BAP+∠APB=90°,
∴∠BAP=∠FPD,
在△ABP和△PFD中,
,
∴△ABP≌△PFD(AAS),
∴BP=FD=x-8,AB=PF=8,
∴CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,
解得x=,
∴,
∴点D;
当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,
∴∠EAD +∠PAF=90°,
过D作DE⊥y轴于E,过P作PF⊥y轴于F,
∴∠DEA=∠PFA=90°,
∴∠FAP+∠FPA=90°,
∴∠FPA=∠EAD,
∵四边形OABC为矩形,
∴AB=OC=8,OA=CB=6,∠ABP=∠BAO=90°,
∵∠PFA=90°,
∴四边形AFPB为矩形,
∴PF=AB=8,
在△APF和△DAE中,
,
∴△APF≌△DAE(AAS),
∴FP=AE=8,AF=DE=6-m,
∴OE=OA+AE=6+8=14,
∴,
解得:,
∵PC=m≥0,
∴AF=6-m≤6<10,
∴此种情况不成立;
综合存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
【点睛】
本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共29页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共26页。试卷主要包含了如图,M,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份数学八年级下册第十五章 四边形综合与测试课时练习,共28页。试卷主要包含了下列命题是真命题的是,下列图案中,是中心对称图形的是,下列说法中,正确的是等内容,欢迎下载使用。