北京课改版八年级下册第十四章 一次函数综合与测试练习
展开京改版八年级数学下册第十四章一次函数同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )
A.2 B.-1 C.-2 D.4
2、点P的坐标为(﹣3,2),则点P位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )
A. B. C.3 D.
4、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
5、下面哪个点不在函数的图像上( ).
A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)
6、函数y=中,自变量x的取值范围是( )
A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣3
7、关于函数有下列结论,其中正确的是( )
A.图象经过点
B.若、在图象上,则
C.当时,
D.图象向上平移1个单位长度得解析式为
8、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )
A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x
9、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
10、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )
A., B.,
C., D.,
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,已知两条直线l1:y=2x+m和l2:y=﹣x+n相交于P(1,3).请完成下列探究:
(1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为 _____.
(2)已知直线x=a(a>1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为 _____.
2、如图,直线与直线相交于点B,直线与y轴交于点A,直线与x轴交于点D与y轴交于点C,交x轴于点E.直线上有一点P(P在x轴上方)且,则点P的坐标为_______.
3、(1)一次函数y=kx+b(k≠0)的图象经过点(0,b).当k>0时,y的值随着x值的增大而____;当k<0时,y的值随着x值的增大而_____.
(2)形如_____(k是常数,k____0)的函数,叫做正比例函数,其中比例系数是_____.
4、河北给武汉运送抗疫物资,某汽车油箱内剩余油量Q(升)与汽车行驶路程s(千米)有如下关系:
行驶路程s(千米) | 0 | 50 | 100 | 150 | 200 | … |
剩余油量Q(升) | 40 | 35 | 30 | 25 | 20 | … |
则该汽车每行驶100千米的耗油量为 _____升.
5、写出一个一次函数,使其函数值随着自变量的值的增大而增大:______.
三、解答题(5小题,每小题10分,共计50分)
1、为了抗击新冠疫情,全国人民众志成城,守望相助.某地一水果购销商安排15辆汽车装运,,这3种水果共120吨进行销售,所得利润全部捐给国家抗疫.已知15辆汽车都要装满,且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆.汽车对不同水果的运载量和销售每吨水果获利情况如下表所示:
水果品种 | |||
汽车运载量(吨/辆) | 10 | 8 | 6 |
水果获利(元/吨) | 800 | 1200 | 1000 |
(1)设装运种水果的车辆数为辆,装运种水果的车辆数为辆
①求与之间的函数关系式;
②设计车辆的安排方案,并写出每种安排方案.
(2)若原有获利不变的情况下,当地政府按每吨60元的标准实行运费补贴.该经销商打算将获利连同补贴全部捐出.问:哪种车辆安排方案可以使这次捐款数(元)最多?捐款数最多是多少?
2、如图,长方形ABCD中,BC=8,CD=5,点E为边AD上一动点,连接CE,随着点E的运动,四边形ABCE的面积也发生变化.
(1)写出四边形ABCE的面积y与AE的长x(0<x<8)之间的关系式;
(2)当x=3时,求y的值;
(3)当四边形ABCE的面积为35时,求DE的长.
3、为丰富同学们的课余活动,某校成立了篮球课外兴趣小组,计划购买一批篮球,需购买、两种不同型号的篮球共300个.已知购买3个型篮球和2个型篮球共需340元,购买2个型篮球和1个型篮球共需要210元.
(1)求购买一个型篮球、一个型篮球各需多少元?
(2)若该校计划投入资金元用于购买这两种篮球,设购进的型篮球为个,求关于的函数关系式;
(3)学校在体育用品专卖店购买、两种型号篮球共300个,经协商,专卖店给出如下优惠:种球每个降价8元,种球打9折,计算下来,学校共付费16740元,学校购买、两种篮球各多少个?
4、某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,
(1)当时,单价y为______元;当单价y为8.8元时,购买量x(千克)的取值范围为______;
(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;
(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?
5、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
-参考答案-
一、单选题
1、C
【解析】
【分析】
首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.
【详解】
解:由题意得:x=1时,y=k+3,
∵在x=1处,自变量增加2,函数值相应减少4,
∴x=3时,函数值是k+3-4,
∴3k+3=k+3-4,
解得:k=-2,
故选C.
【点睛】
此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.
2、B
【解析】
【分析】
根据平面直角坐标系中四个象限中点的坐标特点求解即可.
【详解】
解:∵点P的坐标为(﹣3,2),
∴则点P位于第二象限.
故选:B.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
3、D
【解析】
【分析】
由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.
【详解】
解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),
∴m2-3=6,即m2=9,
解得:m=-3或m=3.
又∵y的值随着x的值的增大而减小,
∴m-2<0,
∴m<2,
∴m=-3.
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.
4、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
5、D
【解析】
【分析】
将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.
【详解】
解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;
B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;
C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;
D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.
6、B
【解析】
【分析】
根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.
【详解】
解:∵函数y=,
∴,解得:x>﹣3.
故选:B.
【点睛】
本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.
7、D
【解析】
【分析】
根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
【详解】
解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
故选D.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
8、D
【解析】
【分析】
先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.
【详解】
解:由图可知:A(0,3),xB=1.
∵点B在直线y=2x上,
∴yB=2×1=2,
∴点B的坐标为(1,2),
设直线AB的解析式为y=kx+b,
则有:,
解得:,
∴直线AB的解析式为y=-x+3;
故选:D.
【点睛】
本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.
9、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
10、B
【解析】
【分析】
由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
【详解】
解:由图象可知,当x>0时,y<0,
∵,
∴ax<0,a<0;
x=b时,函数值不存在,
即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
∴b>0.
故选:B.
【点睛】
本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
二、填空题
1、 4.5 ##
【解析】
【分析】
(1)把P(1,3)分别代入直线l1、 l2,求出直线,再求出两直线与x轴的交点,即可求解;
(2)分别表示出C,D的坐标,根据线段CD长为2,得到关于a的方程,故可求解.
【详解】
解:(1)把P(1,3)代入l1:y=2x+m得3=2+m
解得m=1
∴l1:y=2x+1
令y=0,∴2x+1=0
解得x=-,
∴A(-,0)
把P(1,3)代入l2:y=﹣x+n得3=-1+n
解得n=4
∴l1:y=﹣x+4
令y=0,∴﹣x+4=0
解得x=4,
∴B(4,0)
∴AB=4-(-)=4.5;
故答案为:4.5;
(2)∵已知直线x=a(a>1)分别与l1、l2相交于C,D两点,
设C点坐标为(a,y1),D点坐标为(a,y2),
∴y1=2a+1,y2=﹣a+4
∵CD=2
∴
解得a=或a=
∵a>1
∴a=.
故答案为:.
【点睛】
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.
2、(-3,4)
【解析】
【分析】
先求出A(0,4),D(-1,0),C(0,-2),得到AC=6,再求出B点坐标,从而求出△ABC的面积;然后求出直线AE的解析式得到E点坐标即可求出DE的长,再由进行求解即可.
【详解】
解:∵A是直线与y轴的交点,C、D是直线与y轴、x轴的交点,
∴A(0,4),D(-1,0),C(0,-2),
∴AC=6;
联立 ,
解得,
∴点B的坐标为(-2,2),
∴,
∵,
∴可设直线AE的解析式为,
∴,
∴直线AE的解析式为,
∵E是直线AE与x轴的交点,
∴点E坐标为(2,0),
∴DE=3,
∴,
∴,
∴,
∴点P的坐标为(-3,4),
故答案为:(-3,4).
【点睛】
本题主要考查了一次函数综合,求一次函数与坐标轴的交点,两直线的交点坐标,三角形面积,解题的关键在于能够熟练掌握一次函数的相关知识.
3、 增大 减小 y=kx ≠ k
【解析】
【分析】
(1)根据一次函数的性质填写即可;
(2)根据正比例函数得概念填写即可.
【详解】
解:(1)∵函数为一次函数 ,
∴当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小;
(2)由正比例函数概念可知:
把形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中比例系数是k.
故答案为:①增大 ② 减小 ③y=kx ④≠ ⑤k.
【点睛】
本题考查了正比例概念和一次函数的性质,做题的关键是牢记正比例和一次函数的概念准确填写.
4、10
【解析】
【分析】
根据表格中两个变量的变化关系得出函数关系式即可.
【详解】
解:根据表格中两个变量的变化关系可知,
行驶路程每增加50千米,剩余油量就减少5升,
所以行驶路程每增加100千米,剩余油量就减少10升,
故答案为:10.
【点睛】
本题考查函数的表示方法,理解表格中两个变量的变化规律是正确解答的前提.
5、(答案不唯一)
【解析】
【分析】
根据其函数值随着自变量的值的增大而增大,可得该一次函数的自变量系数大于0,即可求解.
【详解】
解:∵其函数值随着自变量的值的增大而增大,
∴该一次函数的自变量系数大于0,
∴该一次函数解析式为.
故答案为:(答案不唯一)
【点睛】
本题主要考查了一次函数的性质,求函数值,熟练掌握对于一次函数 ,当 时, 随 的增大而增大,当 时, 随 的增大而减小是解题的关键.
三、解答题
1、(1)①y=152x;②有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;(2)采用A、B、C三种的车辆数分别是:3辆、9辆、3辆;捐款数最多是134400元.
【解析】
【分析】
(1)①等量关系为:车辆数之和=15,由此可得出x与y的关系式;
②由题意,列出不等式组,求出x的取值范围,即可得到答案;
(2)总利润为:装运A种水果的车辆数×10×800+装运B种水果的车辆数×8×1200+装运C种水果的车辆数×6×1000+运费补贴,然后按x的取值来判定.
【详解】
解:(1)①设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,则装C种水果的车辆是(15-x-y)辆.
则10x+8y+6(15-x-y)=120,
即10x+8y+90-6x-6y=120,
则y=15-2x;
②根据题意得:
,
解得:3≤x≤6.
则有四种方案:A、B、C三种的车辆数分别是:3辆、9辆、3辆;或4辆、7辆、4辆;或5辆、5辆、5辆;或6辆、3辆、6辆;
(2)w=10×800x+8×1200(15-2x)+6×1000[15-x-(15-2x)]+120×50
=5200x+150000,
根据一次函数的性质,当x=3时,w有最大值,是5200×3+150000=134400(元).
应采用A、B、C三种的车辆数分别是:3辆、9辆、3辆.
【点睛】
本题考查了一次函数的应用及不等式的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装在的几种方案是解决本题的关键.
2、(1)(0<x<8);(2)当x=3时,求y的值为;(3)DE的长为2.
【解析】
【分析】
(1)根据梯形面积公式直接代入即可得函数关系式;
(2)将代入函数解析式求解即可得;
(3)将代入函数解析式求解,然后利用图形可得,将线段长代入求解即可.
【详解】
解:(1)四边形ABCE为直角梯形,
,
∴四边形ABCE面积y与x之间的函数关系式为:;
(2)当时,
,
∴y的值为;
(3)当时,
,
解得:,
∴,
∴DE的长为2.
【点睛】
题目主要考查一次函数的应用,理解题意,根据梯形面积列出一次函数解析式是解题关键.
3、(1)一个A型篮球为80元,一个B型篮球为50元;(2)函数解析式为:;(3)A型篮球120个,则B型篮球为180个.
【解析】
【分析】
(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意列出方程组求解即可得;
(2)A型篮球t个,则B型篮球为个,根据单价、数量、总价的关系即可得;
(3)根据A型篮球与B型篮球的优惠政策求出单价,然后代入(2)解析式中求解即可得.
【详解】
解:(1)设一个A型篮球为x元,一个B型篮球为y元,根据题意可得:
,
解得:,
∴一个A型篮球为80元,一个B型篮球为50元;
(2)A型篮球t个,则B型篮球为个,根据题意可得:
,
∴函数解析式为:;
(3)根据题意可得:A型篮球单价为元,B型篮球单价为元,则
,
解得:,,
∴A型篮球120个,则B型篮球为180个.
【点睛】
题目主要考查二元一次方程组及一次函数的应用,理解题意,列出相应方程是解题关键.
4、(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【解析】
【分析】
(1)根据观察函数图象的横坐标,纵坐标,可得结果;
(2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;
(3)将代入(2)函数解析式即可.
【详解】
解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.
故答案为:10;;
(2)设函数图象的解析式 (k是常数,b是常数,),
图象过点,,
可得:,
解得,
函数图象的解析式:;
(3)当时,
,
答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元.
【点睛】
本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.
5、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】
(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】
本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
北京课改版八年级下册第十四章 一次函数综合与测试一课一练: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共27页。试卷主要包含了点A个单位长度.等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试巩固练习: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试巩固练习,共23页。试卷主要包含了点P的坐标为等内容,欢迎下载使用。
初中第十四章 一次函数综合与测试测试题: 这是一份初中第十四章 一次函数综合与测试测试题,共24页。试卷主要包含了如图,过点A等内容,欢迎下载使用。