2021学年第六章 二元一次方程组综合与测试复习练习题
展开冀教版七年级下册第六章二元一次方程组定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、下列各式中是二元一次方程的是( )
A. B. C. D.
2、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )
A.y= B.y= C.x=2y﹣11 D.x=11﹣2y
3、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )
A.2 B.1 C.﹣1 D.﹣2
4、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
5、在下列各组数中,是方程组的解的是( )
A. B. C. D.
6、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米 B.80厘米 C.100厘米 D.120厘米
7、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )
A.2个 B.3个 C.4个 D.5个
8、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
9、有下列方程组:①;②;③;④ ;⑤,其中二元一次方程组有( )
A.1个 B.2个 C.3个 D.4个
10、用代入消元法解二元一次方程组,将①代入②消去x,可得方程( )
A.(y+2)+2y=0 B.(y+2)﹣2y=0 C.x=x+2 D.x﹣2(x﹣2)=0
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现____________,从而求得方程组的解,这种解方程组的方法叫做____________,简称代入法.
2、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.
3、解三元一次方程组的基本思路:通过“代入”或“加减”进行___,把“三元”___ “二元”,使解三元一次方程组转化为解_____,进而再转化为解_____.
4、用二元一次方程组解决实际问题的步骤:
(1)___________:弄清题意和题目中的数量关系;
(2)___________:用字母表示题目中的未知数;
(3)___________:根据两个等量关系列出方程组;
(4)___________:利用代入消元法或加减消元法解出未知数的值;
(5)___________:检验所求的解是否符合实际意义,然后作答.
5、火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食,外卖,摆摊三种方式的营业额之比为3:5:2,随着促销消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的,则摆摊营业额将达到7月份总营业额的,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是_____.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组.
2、春节临近,坚果和炒货都进入销售旺季,某批发商去年12月售出一批开心果和夏威夷果,其中开心果的售价为60元/千克,夏威夷果的售价为50元/千克,开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.
(1)该批发商去年12月开心果和夏威夷果的销量分别为多少千克?
(2)由于供不应求,该批发商开始调整价格,今年1月开心果销售价格在去年12月基础上增长了2a%,销量减少了100千克;今年1月夏威夷果销售价格在去年12月基础上增加了元,销量下降了10%,最终今年每月总销售额比去年12月总销售额多了5900元,求a的值.
3、某校艺术节表演了30个节目,其中歌曲类节目比舞蹈类节目的3倍少2个,问歌唱类节目和舞蹈类节目各有多少个.
4、例1.知识点一 解三元一次方程组
解方程组:
5、解方程组时,两位同学的解法如下:
解法一:由①﹣②,得3x=﹣3
解法二:由②得3x+(x﹣2y)=5③
①代入③得3x+2=5
(1)反思:上述两种解题过程中你发现解法 的解题过程有错误(填“一”或“二”);解二元一次方程组的基本思想 .
(2)请选择一种你喜欢的方法解此方程组.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;
【详解】
中x的次数为2,故A不符合题意;
是二元一次方程,故B符合题意;
中不是整式,故C不符合题意;
中y的次数为2,故D不符合题意;
故选B.
【点睛】
本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.
2、B
【解析】
【详解】
解:,
,
.
故选:B.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.
3、A
【解析】
【分析】
把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.
【详解】
∵x=2,y=﹣1是方程ax+y=3的一组解,
∴2a-1=3,
解得a=2,
故选A.
【点睛】
本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.
4、B
【解析】
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
5、D
【解析】
【分析】
根据二元一次方程组的解可把选项逐一代入求解即可.
【详解】
解:∵
∴把代入方程①得:,代入②得:,所以该解不是方程组的解,故A选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故B选项不符合题意;
把代入方程①得:,代入②得:,所以该解不是方程组的解,故C选项不符合题意;
把代入方程①得:,代入②得:,所以该解是方程组的解,故D选项符合题意;
故选D.
【点睛】
本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.
6、D
【解析】
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
7、C
【解析】
【分析】
设原两位数的个位为 十位为 则这个两位数为 所以交换其个位数与十位数的位置,所得新两位数为 再列方程 再求解方程的符合条件的正整数解即可.
【详解】
解:设原两位数的个位为 十位为 则这个两位数为
交换其个位数与十位数的位置,所得新两位数为 则
整理得:
为正整数,且
或或或
所以这个两位数为:
故选C
【点睛】
本题考查的是二元一次方程的应用,二元一次方程的正整数解,理解题意,正确的表示一个两位数是解本题的关键.
8、A
【解析】
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
9、B
【解析】
略
10、B
【解析】
【分析】
把x﹣2y=0中的x换成(y+2)即可.
【详解】
解:用代入消元法解二元一次方程组,将①代入②消去x,
可得方程(y+2)﹣2y=0,
故选:B.
【点睛】
此题主要考查了解二元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.
二、填空题
1、 消元 代入消元法
【解析】
略
2、 代入 加减 二元 二元一次方程组 一元一次方程
【解析】
略
3、 消元 化为 二元一次方程组 一元一次方程
【解析】
【分析】
利用解三元一次方程组的基本思想-消元的思想,判断即可得到结果.
【详解】
解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.
故答案为:消元;化为;二元一次方程组;一元一次方程
【点睛】
此题考查了解三元一次方程组的思路,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
4、 审题 设元 列方程组 解方程组 检验并答
【解析】
略
5、故答案为:
【点睛】
本题考查了二元一次方程的解、解一元一次方程,掌握理解二元一次方程的解的概念(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.
2.1:8
【解析】
【分析】
设6月份堂食、外卖,摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,根据题意,列出方程组,即可.
【详解】
设6月份堂食、外卖,摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,
由题意可得:,
解得:
∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b﹣5a):20b=1:8,
故答案为:1:8.
【点睛】
本题主要考查三元一次方程组的实际应用,准确找出等量关系,列出方程组是解题的关键.
三、解答题
1、
【解析】
【分析】
②×2-①可求解y值,再将y值代入①可求解x值,进而解方程.
【详解】
解:,
②×2-①得y=1,
将y=1代入①得2x+3=7,
解得x=2,
∴方程组的解为.
【点睛】
本题主要考查二元一次方程组的解法,解二元一次方程组:加减消元法,代入消元法,选择合适的解法是解题的关键.
2、 (1)该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;
(2)a=10.
【解析】
【分析】
(1)设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克,根据等量关系开心果的销量比夏威夷果的销量多500千克,总销售额为85000元.列方程组,解方程组即可;
(2)根据开心果涨价后销售价格×减少后销量+夏威夷果涨价后的销售价格×降低10%后的销量=12月份销售额+5900,列方程,然后解方程即可.
(1)
解:设该批发商去年12月开心果的销量为x千克,夏威夷果的销量分别为y千克
根据题意,得,
解得,
答该批发商去年12月开心果和夏威夷果的销量分别为1000千克,500千克;
(2)
解:,
整理得76500+1440a=90900,
解得:a=10,
经检验a=10是原方程的根,并符合题意.
【点睛】
本题考查列二元一次方程组解应用题,一元一次方程解销售问题应用题,掌握列二元一次方程组解应用题,一元一次方程解销售问题应用题的方法与步骤是解题关键.
3、歌唱类节目和舞蹈类节目分别有22个和8个
【解析】
【分析】
由题意,歌唱类节目+舞蹈类节目=30个,歌曲类节目=3倍舞蹈类节目-2个,设未知数列方程组求解.
【详解】
解:设歌唱类节目x个,舞蹈类节目y个,
由题意,得
,
解得: ,
答:歌唱类节目和舞蹈类节目分别有22个和8个.
【点睛】
本题考查了二元一次方程组的应用,正确找到等量关系,并以此列出方程是解题的关键.
4、
【解析】
【分析】
通过消元,把三元一次方程组转化为二元一次方程组,最后转化为一元一次方程求解即可.
【详解】
①+②得:2x+3y=18,④
②+③得:4x+y=16,⑤
由④和⑤组成一个二元一次方程组:
解得:
把x=3,y=4代入①得:3+4+z=12,
解得:z=5,
所以原方程组的解为:
【点睛】
本题考查解三元一次方程组,解题的关键是“消元”思想的运用.
5、 (1)一,消元;
(2)
【解析】
【分析】
(1)上述两种解题过程中解法一的解题过程有错误,解二元一次方程组的基本思想消元思想;
(2)用②①,消去,求出,再把的值代入①即可求出.
(1)
解:上述两种解题过程中解法一的解题过程有错误,解二元一次方程组的基本思想消元思想;
故答案为:一;消元;
(2)
解:②①得:,解得,
将代入①得:,解得,
所以方程组的解为:.
【点睛】
此题考查了解二元一次方程组,解题的关键是掌握消元的思想和消元的方法,消元的方法有:代入消元法与加减消元法.
冀教版七年级下册第六章 二元一次方程组综合与测试课后测评: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共20页。试卷主要包含了下列方程是二元一次方程的是,已知是方程的解,则k的值为,若方程组的解为,则方程组的解为等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时练习: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共18页。试卷主要包含了下列各式中是二元一次方程的是,已知关于x,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试测试题: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试测试题,共22页。试卷主要包含了下列方程组中,二元一次方程组有,《九章算术》中记载,有铅笔等内容,欢迎下载使用。