初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时训练
展开冀教版七年级下册第六章二元一次方程组专题测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出m,则m的值是( )
A. B. C. D.
2、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.5
3、下列各方程中,是二元一次方程的是( )
A.=y+5x B.3x+1=2xy C.x=y2+1 D.x+y=1
4、若是方程的解,则等于( )
A. B. C. D.
5、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )
A.2 B.1 C.﹣1 D.﹣2
6、《九章算术》“盈不足”一卷中有这样一个问题:“今有善田一亩,价三百;恶田七亩,价五百.今并买一顷,价钱一万.问善、恶田各几何?”意思是:“今有好田1亩,价值300钱;坏田7亩,价值500钱.今共买好、坏田1顷(1顷=100亩),总价值10000钱.问好、坏田各买了多少亩?”设好田买了x亩,坏田买了y亩,则下面所列方程组正确的是( )
A. B.
C. D.
7、若方程x+y=3,x﹣2y=6和kx+y=7有公共解,则k的值是( )
A.1 B.﹣1 C.2 D.﹣2
8、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )
A.-3 B.-2 C.2 D.无法计算
9、在下列方程中,属于二元一次方程的是( )
A.x2+y=3 B.2x=y C.xy=2 D.2x+y=z﹣1
10、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、解二元一次方程组有___________和___________.
2、某服装厂生产一批某种款式的秋装,已知每2m的某种布料可做上衣的衣身3个或衣袖5只,现计划用132m这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料做衣身和衣袖,才能使做的衣身和衣袖恰好配套?
解:设用xm布料做衣身,用ym布料做衣袖.
根据题意得:
解得:___________
所以,用60m布料做衣身,用72m布料做衣袖,才能使衣身和衣袖恰好配套.
3、识别一个方程组是否为二元一次方程组的方法:
一看:方程组中的方程是否都是____方程;
二看:方程组中是不是只含有____个未知数;
三看:含未知数的项的次数是不是都为____.
注意:有时还需将方程组化简后再看.
4、含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做___________.
5、已知x、y满足方程组,则的值为__________.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、解方程组:.
3、解方程组:
(1);
(2).
4、解方程组:.
5、小明从家到学校的路程为3.3千米,其中有一段上坡路,平路,和下坡路.如果保持上坡路每小时行3千米.平路每小时行4千米,下坡路每小时行5千米.那么小明从家到学校用一个小时,从学校到家要44分钟,求小明家到学校上坡路、平路、下坡路各是多少千米?
-参考答案-
一、单选题
1、A
【解析】
【分析】
把x=1代入方程组,求出y,再将y的值代入1+my=0中,得到m的值.
【详解】
解:把x=1代入方程组,可得,解得y=2,
将y=2代入1+my=0中,得m=,
故选:A.
【点睛】
此题考查了利用二元一次方程组的解求方程中的字母值,正确理解方程组的解的定义是解题的关键.
2、B
【解析】
【分析】
设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.
【详解】
解:设购买笔记本本,购买笔记本本,
由题意得:,即,
因为均为正整数,
所以有以下三种购买方案:
①当,时,,
②当,时,,
③当,时,,
故选:B.
【点睛】
本题考查了二元一次方程的应用,正确建立方程是解题关键.
3、D
【解析】
【分析】
根据二元一次方程的定义逐一排除即可.
【详解】
解:A、=y+5x不是二元一次方程,因为不是整式方程;
B、3x+1=2xy不是二元一次方程,因为未知数的最高项的次数为2;
C、x=y2+1不是二元一次方程,因为未知数的最高项的次数为2;
D、x+y=1是二元一次方程.
故选:D.
【点睛】
此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
4、B
【解析】
【分析】
把代入到方程中得到关于k的方程,解方程即可得到答案.
【详解】
解:∵是方程的解,
∴,
∴,
故选B.
【点睛】
本题主要考查了二元一次方程解的定义和解一元一次方程方程,熟知二元一次方程的解得定义是解题的关键.
5、A
【解析】
【分析】
把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.
【详解】
∵x=2,y=﹣1是方程ax+y=3的一组解,
∴2a-1=3,
解得a=2,
故选A.
【点睛】
本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.
6、B
【解析】
【分析】
设他买了x亩好田,y亩坏田,根据总价=单价×数量,结合购买好田坏田一共是100亩且共花费了10000元,即可得出关于x,y的二元一次方程组,此题得解.
【详解】
解:设他买了x亩好田,y亩坏田,
∵共买好、坏田1顷(1顷=100亩).
∴x+y=100;
∵今有好田1亩,价值300钱;坏田7亩,价值500钱,购买100亩田共花费10000钱,
∴300x+y=10000.
联立两方程组成方程组得:.
故选:B.
【点睛】
本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.
7、C
【解析】
【分析】
先求出的解,然后代入kx+y=7求解即可.
【详解】
解:联立,
②-①,得
-3y=3,
∴y=-1,
把y=-1代入①,得
x-1=3
∴x=4,
∴,
代入kx+y=7得:4k﹣1=7,
∴k=2,
故选:C.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,二元方程转化为一元方程是解题的关键.
8、C
【解析】
【分析】
将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.
【详解】
解:,
得:,
解得:,
将代入①可得:,
解得:,
∴方程组的解为:,
∵方程组的解也是方程的解,
代入可得,
解得,
故选:C.
【点睛】
题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.
9、B
【解析】
【分析】
直接利用二元一次方程的定义求解即可;
【详解】
解:A、该方程中未知数的最高次数是2,不属于二元一次方程,故不符合题意.
B、该方程符合二元一次方程的定义,故符合题意.
C、该方程含有未知数的项最高次数是2,不属于二元一次方程,故不符合题意.
D、该方程中含有3个未知数,不属于二元一次方程,故不符合题意.
故选:B.
【点睛】
本题主要考查二元一次方程的定义,含有两个未知数,且未知数的最高次数都是一次的整式方程是二元一次方程.熟练掌握二元一次方程的概念是解题的关键.
10、B
【解析】
【分析】
设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.
【详解】
解:设绳子长x尺,长木长y尺,
依题意,得:,
故选:B.
【点睛】
本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
二、填空题
1、 代入消元法 加减消元法
【解析】
略
2、
【解析】
略
3、 整式 两 1
【解析】
略
4、三元一次方程组
【解析】
略
5、1
【解析】
【分析】
利用整体思想直接用方程①-②即可得结果.
【详解】
解:,
①-②得,4x+4y=4,
x+y=1,
故答案为:1.
【点睛】
本题考查了二元一次方程组的解,解二元一次方程组,解决本题的关键是掌握整体思想.
三、解答题
1、
【解析】
【详解】
解:,
①②,得,
解得:,
把代入①,得,
解得:,
所以方程组的解是.
【点睛】
本题考查了解二元一次方程组,解题的关键是能把二元一次方程组转化成一元一次方程.
2、
【解析】
【分析】
根据题意整理后②①即可求出,把代入①得出,再求出即可.
【详解】
解:整理,得,
②①,得,
把代入①,得,
解得:,
所以方程组的解是.
【点睛】
本题考查解二元一次方程组,能把二元一次方程组转化成一元一次方程是解答此题的关键.
3、 (1)
(2)
【解析】
【分析】
(1)②﹣①得出4y=12,求出y,再把y=3代入②求出x即可;
(2)整理后①+②得出6x=12,求出x,再把x=2代入①求出y即可.
(1)
,
②﹣①,得4y=12,
解得:y=3,
把y=3代入②,得x+3=15,
解得:x=12,
所以方程组的解是;
(2)
,
原方程组化为:,
①+②,得6x=12,
解得:x=2,
把x=2代入①,得6+2y=4,
解得:y=﹣1,
所以方程组的解是.
【点睛】
本题考查解二元一次方程组,解题的关键是消元,常用消元的方法有代入消元法和加减消元法.
4、
【解析】
【分析】
直接利用加减消元法解方程组求解即可;
【详解】
解:,
①+②×2,得7x=10,
解得:x=,
把x=代入②,得+y=2,
解得:y=,
所以方程组的解是.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
5、上坡路2.25千米、平路0.8千米、下坡路0.25千米
【解析】
【分析】
本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程不变.题中的等量关系是:从家到学校的路程为3.3千米;去时上坡时间+下坡时间+平路时间=1小时;回时上坡时间+下坡时间+平路时间=44分,据此可列方程组求解.
【详解】
解:设去时上坡路是x千米,平路是y千米,下坡路是z千米.依题意得:
,
解得.
答:上坡路2.25千米、平路0.8千米、下坡路0.25千米.
【点睛】
本题考查了三元一次方程组的应用,本题有三个未知量,还需注意去时是上坡路回时是下坡路,回来时恰好相反,平路不变.
冀教版七年级下册第六章 二元一次方程组综合与测试测试题: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试测试题,共20页。试卷主要包含了某学校体育有场的环形跑道长,甲等内容,欢迎下载使用。
2021学年第六章 二元一次方程组综合与测试一课一练: 这是一份2021学年第六章 二元一次方程组综合与测试一课一练,共19页。
初中数学第六章 二元一次方程组综合与测试同步测试题: 这是一份初中数学第六章 二元一次方程组综合与测试同步测试题,共20页。试卷主要包含了已知是二元一次方程,则的值为等内容,欢迎下载使用。