初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习题
展开冀教版七年级下册第六章二元一次方程组重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
2、如图,用12块形状和大小均相同的小长方形纸片拼成一个宽是60厘米的大长方形,则每个小长方形的周长是( )
A.60厘米 B.80厘米 C.100厘米 D.120厘米
3、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )
A. B.
C. D.
4、二元一次方程组更适合用哪种方法消元( )
A.代入消元法 B.加减消元法
C.代入、加减消元法都可以 D.以上都不对
5、用代入消元法解关于、的方程组时,代入正确的是( )
A. B.
C. D.
6、若关于x,y的方程是二元一次方程,则m的值为( )
A.﹣1 B.0 C.1 D.2
7、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
8、如果二元一次方程组的解是二元一次方程的一个解,那么的值是( )
A.9 B.7 C.5 D.3
9、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有人,辆车,可列方程组为( )
A. B. C. D.
10、甲、乙两城相距1120千米,一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇.若快车平均每小时行驶的路程是动车平均每小时行驶的路程的一半还多5千米,则动车平均每小时比快车平均每小时多行驶的路程为( )
A.330千米 B.170千米 C.160千米 D.150千米
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、某次数学竞赛以60分为及格分数线,参加竞赛的所有学生的平均分为66分,而其中所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分.后来老师发现有一道题出错了,于是给每位学生的成绩加上5分;加分之后,所有成绩及格的学生的平均分变为了75分,所有成绩不及格的学生的平均分变为了59分;已知这次参赛学生人数介于15到30人之间,则参赛的学生有________人
2、若是方程x+ay=3的一个解,则a的值为 ______.
3、方程组的解是:________.
4、某超市有甲,乙,丙三种坚果礼盒,它们都是由,,三种坚果组成,甲,乙,丙三种坚果礼盒的成本均为盒内,,三种坚果的成本之和。超市现有甲,乙的数量相等,丙的数量比甲的数量多25%,甲种坚果礼盒内装有种坚果5袋,种坚果1袋,种坚果3袋,乙种坚果礼盒内装有种坚果4袋,种坚果2袋,种坚果6袋,每盒甲种坚果礼盒的成本是1袋种坚果成本的15倍,销售利润率是60%,每盒乙种坚果礼盒的售价是成本的倍,每盒丙种坚果礼盒在成本的基础上提价60%后打八折销售,获利为1袋种坚果成本的5.6倍,如果超市将所有礼盒全部售出,则该超市出售这三种坚果礼盒获得的总利润率为______.
5、含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做___________.
三、解答题(5小题,每小题10分,共计50分)
1、解方程组:.
2、一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
3、为缓解电力供需矛盾,促进能源绿色低碳发展,某市推行峰谷分时电价政策.峰谷分时电价为:峰时(8:00~22:00)每度电0.55元,谷时(22:00~次日8:00)每度电0.3元.小颖家10月份用电120度,缴纳电费61元.
(1)求小颖家10月份,峰时、谷时各用电多少度?
(2)为响应节电政策,小颖11月份计划将20%的峰时用电转移至谷时,这样在她用电量保持不变的情况下能节省电费多少元?
4、解方程组
(1)
(2)
5、已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.
-参考答案-
一、单选题
1、A
【解析】
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
2、D
【解析】
【分析】
设小长方形的长为x,小长方形的宽为y,根据题意列出二元一次方程组求解即可;
【详解】
设小长方形的长为x,小长方形的宽为y,
根据题意可得:,
解得:,
∴每个小长方形的周长是;
故选D.
【点睛】
本题主要考查了二元一次方程组的应用,准确计算是解题的关键.
3、A
【解析】
【分析】
根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.
【详解】
解:设小长方形的长为x,宽为y,
由题意得: 或,
故选A.
【点睛】
本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.
4、B
【解析】
【分析】
由题意直接根据加减消元法和代入消元法的特点进行判断即可.
【详解】
解:,
①②,得,消去了未知数,
即二元一次方程组更适合用加减法消元,
故选:.
【点睛】
本题考查解二元一次方程组,注意掌握解二元一次方程组的方法有:代入消元法和加减消元法两种.
5、A
【解析】
【分析】
利用代入消元法把①代入②,即可求解.
【详解】
解:,
把①代入②,得:.
故选:A
【点睛】
本题主要考查了解二元一次方程组,解题的关键是熟练掌握二元一次方程组数为解法——代入消元法和加减消元法.
6、C
【解析】
【分析】
根据二元一次方程的定义得出且,再求出答案即可.
【详解】
解:∵关于x,y的方程是二元一次方程,
∴且,
解得:m=1,
故选C.
【点睛】
本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.
7、B
【解析】
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
8、B
【解析】
【分析】
先求出的解,然后代入可求出a的值.
【详解】
解:,
由①+②,可得2x=4a,
∴x=2a,
将x=2a代入①,得
2a-y=a,
∴y=2a﹣a=a,
∵二元一次方程组的解是二元一次方程的一个解,
∴将代入方程3x﹣5y﹣7=0,可得6a﹣5a﹣7=0,
∴a=7,
故选B.
【点睛】
本题考查了二元一次方程的解,以及二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
9、C
【解析】
【分析】
根据题意,找到关于x、y的两组等式关系,即可列出对应的二元一次方程组.
【详解】
解:由每三人共乘一车,最终剩余2辆车可得:.
由每2人共乘一车,最终剩余9个人无车可乘可得:.
该二元一次方程组为:.
故选:C.
【点睛】
本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.
10、C
【解析】
【分析】
设动车平均每小时行驶x千米,快车平均每小时行驶y千米,根据“一列快车从甲城出发120千米后,另一列动车从乙城出发开往甲城,2个小时后两车相遇,且快车平均每小时行驶的路程比动车平均每小时行驶的路程的一半还多5千米”,即可得出关于x,y的二元一次方程组,求出动车与快车平均每小时行驶的路程即可解答.
【详解】
解:设动车平均每小时行驶x千米,快车平均每小时行驶y千米,
依题意得: ,
解得: ,
,
故选:C.
【点睛】
本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.
二、填空题
1、28
【解析】
【分析】
设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.
【详解】
解:设加分前及格人数为x人,不及格人数为y,原来不及格加分为及格的人数为n,
根据题意得,,
解得:,
所以x+y=n,
而15<n<30,n为正整数,n为整数,
所以n=5,
所以x+y=28,
即该班共有28位学生.
故答案为:28.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是学会利用参数.构建方程组的模型解决问题.
2、
【解析】
【分析】
将代入方程可得一个关于的一元一次方程,解方程即可得.
【详解】
解:由题意,将代入得:,
解得,
故答案为:.
【点睛】
本题考查了二元一次方程的解、一元一次方程,掌握理解二元一次方程的解的定义(一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解)是解题关键.
3、
【解析】
【分析】
利用加减消元法解题.
【详解】
解:
①+②×3得:
把代入②得,
故答案为:.
【点睛】
本题考查加减法解二元一次方程组,是重要考点,掌握相关知识是解题关键.
4、45.31%.
【解析】
【分析】
设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,根据已知条件求出甲、乙、丙礼盒的成本和售价以及利润,根据利润率=总利润÷成本,即可得出结果.
【详解】
解:设每袋a种坚果成本为x,每袋b种坚果成本为y,每袋c种坚果成果为z,甲种礼盒有n盒,乙种礼盒有n盒,丙种礼盒有1.25n盒,
甲礼盒:5x+y+3z=15x,即y+3z=10x,售价为15x(1+60%)=25x,
乙礼盒:成本=4x+2y+6z=4x+2×10x=24x,售价为×24x=36x,
丙礼盒:设成本为m,则m(1+60%)×80%﹣m=5.6x,m=20x,售价为25.6x,
甲礼盒利润25x﹣15x=10x,
乙礼盒利润36x﹣24x=12x,
丙礼盒利润5.6x,
∴总利润率为≈45.31%,
故答案为:45.31%.
【点睛】
本题主要考查列代数式,整式加减法,三元一次方程的实际应用,分析题意,找到关键的描述语,找到合适的等量关系,同时熟悉有关销售问题的概念和公式是解决问题的关键,属于中档题.
5、三元一次方程组
【解析】
略
三、解答题
1、
【解析】
【详解】
解:,
用②①,得:,
解得:,
将代入①,得:,
解得:,
方程组的解为.
【点睛】
此题考查了解二元一次方程组,正确掌握解方程组的方法:代入法和加减法并应用解决问题是解题的关键.
2、 (1)静水中的速度是16千米/小时,水流速度是4千米/小时
(2)75千米
【解析】
【分析】
(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.
【小题1】
解:设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,
依题意,得:,
解得:,
答:该轮船在静水中的速度是16千米/小时,水流速度是4千米/小时.
【小题2】
设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,
依题意,得:,
解得:a=75,
答:甲、丙两地相距75千米.
【点睛】
本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.
3、 (1)小颖家10月份峰时用电100度,谷时用电20度
(2)在她用电量保持不变的情况下能节省电费5元.
【解析】
【分析】
(1)设小颖家10月份峰时用电x度,谷时用电y度,根据“10月份用电120度,缴纳电费61元”列出二元一次方程组求解即可;
(2)计算出变化后的电费,用61相减即可.
(1)
设小颖家10月份峰时用电x度,谷时用电y度,根据题意得,
解得,
答:小颖家10月份峰时用电100度,谷时用电20度
(2)
=
=5(元)
答:在她用电量保持不变的情况下能节省电费5元.
【点睛】
此题主要考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
4、 (1)
(2)
【解析】
【分析】
(1)利用加减消元法,即可求解;
(2)利用加减消元法,即可求解.
(1)
,
①×2,得2x﹣2y=8③,
③+②,得6x=7,
解得,
将代入①,得y=﹣,
∴方程组的解为;
(2)
①﹣②得,,
解得,y=9,
将y=9代入①,得x=6,
∴方程组的解为.
【点睛】
本题考查了二元一次方程组的解法,准确消元把二元一次方程组变为一元一次方程是解决问题的关键.
5、
【解析】
【详解】
解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以
,
整理,得:
④-③,得2m=8,所以m=4.
把m=4代入③,得2n=6,
所以n=3.
所以当时,xm-n+1y与-2xn-1y3m-2n-5是同类项。
数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题: 这是一份数学七年级下册第六章 二元一次方程组综合与测试当堂达标检测题,共18页。试卷主要包含了《九章算术》中记载,若关于x等内容,欢迎下载使用。
冀教版七年级下册第六章 二元一次方程组综合与测试课时训练: 这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课时训练,共18页。试卷主要包含了已知x,y满足,则x-y的值为等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后测评: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课后测评,共19页。试卷主要包含了有下列方程,已知,则,已知是方程的解,则k的值为等内容,欢迎下载使用。