![2022年最新精品解析冀教版七年级下册第六章二元一次方程组专题练习试卷第1页](http://www.enxinlong.com/img-preview/2/3/12717132/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级下册第六章二元一次方程组专题练习试卷第2页](http://www.enxinlong.com/img-preview/2/3/12717132/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版七年级下册第六章二元一次方程组专题练习试卷第3页](http://www.enxinlong.com/img-preview/2/3/12717132/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试精练
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试精练,共18页。试卷主要包含了已知关于x,《孙子算经》记载等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、若是方程组的解,则的值为( )A.16 B.-1 C.-16 D.12、某校九年级学生到礼堂开会,若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳.若设学生人数为,长凳数为,由题意列方程组为( )A. B.C. D.3、下列各组数中,是二元一次方程组的解的是( )A. B. C. D.4、已知关于x、y的方程组的解满足2x﹣y=2k,则k的值为( )A.k B.k C.k D.k5、《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为( )A. B.C. D.6、用加减法将方程组中的未知数x消去后,得到的方程是( ).A.2y=6 B.8y=16 C.﹣2y=6 D.﹣8y=167、若关于x,y的二元一次方程组的解互为相反数,则k的值是( )A.4 B.3 C.2 D.18、为奖励期中考试中成绩优异的同学,七(二)班计划用50元购买笔记本和中性笔两种奖品,已知笔记本的价格为7元,中性笔的价格为2元,若两种奖品都买,则购买的方案有几种?( )A.2 B.3 C.4 D.59、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x人,有y辆车,根据题意,所列方程组正确的是( )A. B. C. D.10、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、某游乐园有甲、乙两个自行车租车营业点,顾客租车后当天须在营业结束前在任意一个营业点还车.某一天该游乐园营业结束清点车辆时,发现所有出租的自行车都已经归还,在甲营业点归还的自行车比从甲营业点出租的多4辆,当天从甲营业点出租且在甲营业点归还的自行车为25辆,从乙营业点出租且在乙营业点归还的自行车为23辆.设当天从甲营业点出租自行车x辆,从乙营业点出租自行车y辆,下面结论中,①在甲营业点归还的自行车为(x+4)辆;②从甲营业点出租且在乙营业点归还的自行车为(x-25)辆;③ x与y之间的数量关系为y=x+2.所有正确结论的序号为____.2、方程组的解是:_____.3、根据条件“比x的一半大3的数等于y的2倍”中的数量关系列出方程为 _____.4、关于x、y的二元一次方程组的解满足,则m的值是_______.5、2x-y=3用含x的式子表示y,得____________;用含y的式子表示x,得____________.三、解答题(5小题,每小题10分,共计50分)1、解方程组:(1)(2)2、用适当的方法解下列方程组.3、我们规定:若关于x的一元一次方程的解为,则称该方程为“和解方程”.例如:方程的解为,而,则方程为“和解方程”.请根据上述规定解答下列问题:(1)已知关于x的一元一次方程是“和解方程”,求m的值;(2)已知关于x的一元一次方程是“和解方程”,并且它的解是,求,的值.4、对于数轴上的点和正数,给出如下定义:点在数轴上移动,沿负方向移动个单位长度后所在位置点表示的数是,沿正方向移动个单位长度后所在位置点表示的数是,与这两个数叫做“点的对称数”,记作,其中.例如:原点表示,原点的对称数是.(1)若点表示,则点的对称数,则 , ;(2)若,求点表示的数及的值;(3)己知,,若点、点从原点同时出发,沿数轴反向运动,且点的速度是点速度的倍,当时,请直接写出点表示的数.5、解下列三元一次方程组: -参考答案-一、单选题1、C【解析】【分析】把x与y的值代入方程组,求出a+b与a-b的值,代入原式计算即可求出值.【详解】解:把代入方程组得,两式相加得;两式相差得:,∴,故选C.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2、B【解析】【分析】设学生人数为x,长凳数为y,然后根据若每条长凳坐5人,则少8条长凳;若每条长凳坐6人,则又多余2条长凳,列出方程即可.【详解】解:设学生人数为x,长凳数为y,由题意得:,故选B.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够准确理解题意.3、B【解析】【分析】由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.【详解】解:,得③,得④,③+④得,解得,将代入②得,解得,所以是二元一次方程组的解.故选:B.【点睛】本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.4、A【解析】【分析】根据得出,,然后代入中即可求解.【详解】解:,①+②得,∴③,①﹣③得:,②﹣③得:,∵,∴,解得:.故选:A.【点睛】本题考查了解三元一次方程组,根据题意得出的代数式是解题的关键.5、B【解析】【分析】设甲持钱x,乙持钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的=50,据此列方程组可得.【详解】解:设甲持钱x,乙持钱y,根据题意,得:,故选:B.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.6、D【解析】【分析】根据二元一次方程组的加减消元法可直接进行求解.【详解】解:用加减法将方程组中的未知数x消去,则有①-②得:﹣8y=16;故选D.【点睛】本题主要考查二元一次方程组的求解,熟练掌握二元一次方程组的求解是解题关键.7、C【解析】【分析】先根据“方程组的解互为相反数”可得,再与方程联立,利用消元法求出的值,然后代入方程即可得.【详解】解:由题意得:,联立,由①②得:,解得,将代入①得:,解得,将代入方程得:,解得,故选:C.【点睛】本题考查了解二元一次方程组等知识点,熟练掌握消元法是解题关键.8、B【解析】【分析】设可以购进笔记本x本,中性笔y支,利用总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出购买方案的个数.【详解】解:设可以购进笔记本x本,中性笔y支,依题意得: ,∴ ,∵x,y均为正整数,∴ 或 或 ,∴共有3种购买方案,故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.9、B【解析】【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x,y的二元一次方程组,此题得解.【详解】依题意,得:故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10、A【解析】【分析】把代入求出;再把代入求出数■即可.【详解】解:把代入得,,解得,;把代入得,,解得,;故选A【点睛】本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.二、填空题1、①②③.【解析】【分析】根据在甲营业点归还的自行车比从甲营业点出租的多4辆,可判定①;当天从甲营业点出租且在甲营业点归还的自行车为25辆,可判定②;根据意义列出x、y的关系式并化简可判定③.【详解】解:设当天从甲营业点出租自行车x辆,从乙营业点出租自行车y辆,①由甲营业点归还的自行车比从甲营业点出租的多4辆,则在甲营业点归还的自行车为(x+4)辆,即①正确;②由当天从甲营业点出租且在甲营业点归还的自行车为25辆,那么从甲营业点出租且在乙营业点归还的自行车为(x-25)辆,即②正确;③在甲营业点归还的自行车为(x+4)辆;从甲营业点出租且在甲营业点归还的自行车为25辆;从乙营业点出租且在甲营业点归还的自行车为(y-23)辆;则x+4=25+y-23,化简得y=x+2,即③正确.故答案为①②③.【点睛】本题主要考查了列代数式和二元一次方程,审清题意、根据题意用x、y表示出相关的量是解答本题的关键.2、【解析】【分析】②×3-①求出x的值,再把x的值代入②求出y的值即可.【详解】解:②×3-①,得5x=28∴x= 把x=代入②得, ∴ ∴方程组的解为 故答案为:【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.3、x+3=2y【解析】【分析】根据题中比x的一半大3的数表示为:,y的2倍表示为:,列出方程即可得.【详解】解:比x的一半大3的数表示为:,y的2倍表示为:,综合可得:,故答案为:.【点睛】题目主要考查二元一次方程的应用,理解题意,列出方程是解题关键.4、2【解析】【分析】先两式相加得,再整体代入方程5x+y=得到关于m的方程,解方程即可求出m的值.【详解】解:,①+②得,把代入5x+y=得,解得m=2,故答案为:2.【点睛】本题考查了用加减消元法解二元一次方程组,同时也考查了求一元一次方程的解.整体代入是解题的关键.5、 y=2x-3 【解析】略三、解答题1、(1);(2)【解析】【分析】(1)利用加减法求解;(2)先将方程整理,再利用加减法求出方程组的解.【详解】解:(1),①×5+②,14x=-14,解得x=-1,把x=-1代入①,-2+y=-5,解得y=-3,∴原方程组的解是; (2)方程组整理得由①+②得:6x=18,∴x=3,把x=3代入①得:, 所以方程组的解为.【点睛】此题考查了解二元一次方程组,正确掌握解二元一次方程组的解法:代入消元法及加减消元法是解题的关键.2、【解析】【分析】将代入消元求解的值,进而求出的值.【详解】解:由①得,③将③代入②得,解得把代入③,得∴方程组的解为.【点睛】本题考查了解二元一次方程组.解题的关键在于将二元一次方程组转化成一元一次方程.3、(1)m=−;(2)m=−3,n=−【解析】【分析】(1)根据和解方程的定义即可得出关于m的一元一次方程,解之即可得出结论;(2)根据和解方程的定义即可得出关于m、n的二元一次方程组,解之即可得出m、n的值.【详解】解:(1)∵方程3x=m是和解方程,∴=m+3,解得:m=−.(2)∵关于x的一元一次方程−2x=mn+n是“和解方程”,并且它的解是x=n,∴−2n=mn+n,且mn+n−2=n,解得m=−3,n=−.【点睛】本题考查新定义,一元一次方程的解,理解“和解方程”的定义,解二元一次方程组,将所求问题转化为一元一次方程的解是解题的关键.4、 (1)(2)(3)【解析】【分析】(1)读懂题干中的定义,利用定义进行求解;(2)根据,列出关于的二元一次方程组求解即可;(3)假设点的位置是,点的速度是点速度的2倍,点的位置是,此时,根据点的位置,可以算出,.根据点的位置,得出,,代入中,得到,解出即可.(1)解:,,故答案所示:;(2)解:,,解得:;(3)解:假设点的位置是,因为点的速度是点速度的2倍,所以点的位置是,此时,根据点的位置,可以算出,,根据点的位置,可以算出,,代入中,得到,解得:,.【点睛】本题为创新型题目,解题的关键是重点在题目意思的理解,结合分析可以利用数形结合的方法求解,在掌握了题目含义的基础上,进行解答.注意“,的数值是关于对称”的运用.5、【解析】【详解】将①代入②、③,消去z,得解得把x=2,y=3代入①,得z=5。所以原方程组的解为
相关试卷
这是一份数学七年级下册第六章 二元一次方程组综合与测试测试题,共20页。试卷主要包含了学校计划用200元钱购买等内容,欢迎下载使用。
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课后作业题,共20页。试卷主要包含了若关于x,下列方程中,①x+y=6;②x等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试习题,共17页。试卷主要包含了用代入消元法解关于,已知,则,下列方程组中,二元一次方程组有,已知x,y满足,则x-y的值为等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)