初中数学冀教版七年级下册第六章 二元一次方程组综合与测试练习题
展开冀教版七年级下册第六章二元一次方程组定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、如图,在大长方形中不重叠的放入七个长、宽都相同的小长方形,根据图中给出的数据,可得出阴影部分面积为( )
A.48 B.52 C.58 D.64
2、下列方程中,是二元一次方程组的是( )
A. B. C. D.
3、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )
A.291 B.292 C.293 D.294
4、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )
A. B. C. D.
5、已知,则( )
A. B. C. D.
6、由方程组可以得出关于x和y的关系式是( )
A. B. C. D.
7、已知关于x,y的二元一次方程组的解是,则a+b的值是( )
A.1 B.2 C.﹣1 D.0
8、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需( )
A.1.2元 B.1.05元 C.0.95元 D.0.9元
9、有下列方程组:①;②;③;④ ;⑤,其中二元一次方程组有( )
A.1个 B.2个 C.3个 D.4个
10、佳佳坐在匀速行驶的车上,将每隔一段时间看到的里程碑上的数描述如下:
时刻 | 12:00 | 13:00 | 14:00 |
里程碑上的数 | 是一个两位数,数字之和为7 | 十位数字和个位数字与12:00时看到的刚好相反 | 比12:00看到的两位数中间多了个0 |
则12:00时看到的两位数是( )A.16 B.25 C.34 D.52
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、已知5xm﹣2﹣y2n+5=0是关于x、y的二元一次方程,则m﹣n=___.
2、识别一个方程组是否为二元一次方程组的方法:
一看:方程组中的方程是否都是____方程;
二看:方程组中是不是只含有____个未知数;
三看:含未知数的项的次数是不是都为____.
注意:有时还需将方程组化简后再看.
3、一个两位数,个位上的数字比十位上的数字大3,将个位数字与十位数字交换位置所得到的新两位数比原两位数的3倍少1,则原两位数为_____.
4、为隆重庆祝建党一百周年,某学校欲购买,,三种花卉各100束装饰庆典会场.已知购买4束花卉,7束花卉,1束花卉,共用45元;购买3束花卉,5束花卉,1束花卉,共用35元.则学校购买这批装饰庆典会场的花卉一共要用__元.
5、某班组织20名同学去春游,同时租用A、B两种型号的车辆,A种车每辆有8个座位,B种车每辆有4个座位,要求租用的车辆不留空座,也不能超载,那么可以租用______辆A种车.
三、解答题(5小题,每小题10分,共计50分)
1、(1)解方程3(x+1)=8x+6;
(2)解方程组.
2、解下列方程或方程组:
(1)4x-2 =2x+3
(2)
(3)
3、解方程组:.
4、解方程组:.
5、解方程组.
-参考答案-
一、单选题
1、B
【解析】
【分析】
设小长方形的宽为,长为,根据图形列出二元一次方程组求出、的值,再由大长方形的面积减去7个小长方形的面积即可.
【详解】
设小长方形的宽为,长为,
由图可得:,
得:,
把代入①得:,
大长方形的宽为:,
大长方形的面积为:,
7个小长方形的面积为:,
阴影部分的面积为:.
故选:B.
【点睛】
本题考查二元一次方程组,以及代数式求值,根据题意找出、的等量关系式是解题的关键.
2、B
【解析】
【分析】
根据二元一次方程组的定义解答.
【详解】
解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;
B符合定义,故是二元一次方程组;
C中含有分式,故不符合定义;
D含有三个未知数,故不符合定义;
故选:B.
【点睛】
此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.
3、C
【解析】
【分析】
设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.
【详解】
解:设连续搭建等边三角形x个,连续搭建正六边形y个,
由题意,得,
解得.
故选C.
【点睛】
本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.
4、D
【解析】
【分析】
利用加减消元法逐项判断即可.
【详解】
A. ,可以消去x,不符合题意;
B. ,可以消去y,不符合题意;
C. ,可以消去x,不符合题意;
D. ,无法消元,符合题意;
故选:D
【点睛】
本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.
5、B
【解析】
【分析】
根据二元一次方程组的解法以及非负数的性质即可求出答案.
【详解】
解:由题意可知:
解得: ,
故选:B.
【点睛】
本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.
6、C
【解析】
【分析】
分别用x,y表示m,即可得到结果;
【详解】
由,得到,
由,得到,
∴,
∴;
故选C.
【点睛】
本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.
7、B
【解析】
【分析】
将代入即可求出a与b的值;
【详解】
解:将代入得:
,
∴a+b=2;
故选:B.
【点睛】
本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.
8、B
【解析】
【分析】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,根据“购铅笔3支,练习本7本,圆珠笔1支共需3.15元;购铅笔4支,练习本8本,圆珠笔2支共需4.2元”建立三元一次方程组,然后将两个方程联立,即可求得的值.
【详解】
设一支铅笔、一本练习本和一支圆珠笔的单价分别为x、y和z元,
根据题意得:,
②–①可得:.
故选:B.
【点睛】
本题考查三元一次方程组的实际应用,解题关键是根据两个等量关系列出方程组,而利用整体思想,把所给两个等式整理为只含的等式.
9、B
【解析】
略
10、A
【解析】
【分析】
设小明12:00看到的两位数,十位数为x,个位数为y,根据车的速度不变和12:00时看到的两位数字之和为7,即可列出二元一次方程组,解方程组即可求解.
【详解】
设小明12:00看到的两位数,十位数为x,个位数为y,
由题意列方程组得:,
解得:,
∴12:00时看到的两位数是16.
故选:A.
【点睛】
本题考查二元一次方程组的应用,掌握里程碑上的数的表示是解题的关键.
二、填空题
1、5
【解析】
【分析】
根据二元一次方程的定义(如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程)列出方程求解可得,n﹣2,然后代入代数式求值即可得.
【详解】
解:由题意得:,,
解得:,,
,
故答案为:5.
【点睛】
题目主要考查二元一次方程的定义及求代数式的值,深刻理解二元一次方程的定义是解题关键.
2、 整式 两 1
【解析】
略
3、14
【解析】
略
4、1500
【解析】
【分析】
列出两个三元一次方程,求出购买A、B、C三种花卉各1支的总价格,从而求出购买A,B,C三种花卉各100束的总价.
【详解】
解:设A种花朵元束,种花朵元束,种花朵元束,则
,
①②,得,③,
①③,得,④,
③④,得,,
(元.
故答案为:1500.
【点睛】
本题主要考查了三元一次方程组的实际应用,难点在于无法求出每一个未知数的数值,因而求出购买A、B、C三种花卉各1支的总价格是解决问题的关键,体现了数学的整体思想、化归思想,考查了学生的推理能力、计算能力、应用意识等.
5、1或2##2或1
【解析】
【分析】
设租用型车辆,型车辆,再列方程再求解方程的正整数解即可.
【详解】
解:设租用型车辆,型车辆,则
由题意得:为正整数,
或
所以租用型车1辆或2辆,
故答案为:1或2
【点睛】
本题考查的是二元一次方程的正整数解的应用,掌握“利用二次元一次方程的正整数解确定方案”是解本题的关键.
三、解答题
1、(1)x=;(2)
【解析】
【分析】
(1)去括号,移项,合并同类项,系数化成1即可;
(2)①×2+②得出13x=26,求出x,把x=2代入①求出y即可.
【详解】
解:(1)3(x+1)=8x+6,
去括号,得3x+3=8x+6,
移项,得3x-8x=6-3,
合并同类项,得-5x=3,
系数化成1,得x=;
(2),
①×2+②,得13x=26,
解得:x=2,
把x=2代入①,得10+y=7,
解得:y=-3,
所以方程组的解是.
【点睛】
本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.
2、 (1)
(2)
(3)
【解析】
【分析】
(1)移项、合并同类项、系数化1,即可求解;
(2)去分母、去括号、移项、合并同类项、系数化1,即可求解;
(3)利用加减消元法求解方程组即可.
(1)
解:4x-2=2x+3,
移项,得4x-2x=3+2,
合并同类项,得2x=5,
系数化为1,得 ;
(2)
解:
去分母,得4(x+1)-9x=24,
去括号,得4x+4-9x=24,
移项,得4x-9x=24-4,
合并同类项,得-5x=20,
系数化为1,得x=-4;
(3)
解:
②-①×3,得x=-1,
把x=-1代入①,得-1-y=2,
解得y=-3,
故方程组的解为 .
【点睛】
本题考查一元一次方程及二元一次方程组的解法,解题的关键是熟知解题步骤.
3、.
【解析】
【分析】
根据加减法解一元二次方程即可.
【详解】
解:
①×2+②得:
解得
将代入到①得
方程组的解为:
【点睛】
本题考查了解二元一次方程组,掌握解二元一次方程组是解题的关键.
4、
【解析】
【分析】
利用加减消元法求解即可.
【详解】
解:整理可得,
②×2,可得:4x﹣2y=72③,
③+①,可得:7x=84,
解得:x=12,
把x=12代入②,可得:24﹣y=36,
解得:y=﹣12,
∴方程组的解为.
【点睛】
本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.
5、.
【解析】
【分析】
应用加减消元法,求出方程组的解是多少即可.
【详解】
解:,
①+②,可得4x=8,
解得x=2,
把x=2代入①,解得y=,
∴原方程组的解是.
【点睛】
本题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.