


初中数学第六章 二元一次方程组综合与测试同步测试题
展开冀教版七年级下册第六章二元一次方程组专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、已知二元一次方程组则( )
A.6 B.4 C.3 D.2
2、《九章算术》中记载:“今有共买牛,人出六,不足四十;人出八,余四;问人数、牛价各几何?”其大意是:今有人合伙买牛,若每人出6钱,还差40钱;若每人出8钱,多余4钱,问合伙人数、牛价各是多少?设合伙人数为人,牛价为 钱,根据题意,可列方程组为( )
A. B. C. D.
3、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元
4、关于x,y的二元一次方程组的解为正整数,则满足条件的所有整数a的和为( )
A.1 B.﹣1 C.2 D.﹣3
5、已知是二元一次方程,则的值为( )
A. B.1 C. D.2
6、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).
A. B.
C. D.
7、如图,分别用火柴棍连续搭建等边三角形和正六边形,公共边只用一根火柴棍.如果搭建等边三角形和正六边形共用了2018根火柴,并且等边三角形的个数比正六边形的个数多7,那么连续搭建的等边三角形的个数是( )
A.291 B.292 C.293 D.294
8、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )
A.y= B.y= C.x=2y﹣11 D.x=11﹣2y
9、下列各组数中,是二元一次方程组的解的是( )
A. B. C. D.
10、下列方程组中,属于二元一次方程组的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、已知5xm﹣2﹣y2n+5=0是关于x、y的二元一次方程,则m﹣n=___.
2、为了大力弘扬航天精神,科学普及航天知识,某校特意举行了“扬帆起航,逐梦九天”的知识竞赛.假设共16道题,评分标准如下:答对1题加3分,答错1题扣1分,不答记0分.已知小明不答的题比答错的题多2道,他的总分为28分,则小明答对了______道题.
3、将一张面值50元的人民币,兑换成5元或10元的零钱,两种人民币都要有,那么共有_____种兑换方案.
4、某销商10月份销售B、C三种奶茶的数量之比为2:3:4,A、B、C三种奶茶的单价之比为1:2:3.11月份该销售商加大了宣传力度,并根据季节对三种奶茶的价格作了适当的调整,预计11月份三种奶茶的销售总额将比10月份有所增加,其中A奶茶增加的销售额占11月份销售总额的,A、C奶茶的销售额之比是2:9.11月份三种奶茶的单价之和比10月份增加.11月份C奶茶的数量在10月份基础上上调50%,A、B奶茶的数量不变,则11月份A、B奶茶的单价之比为 ___.
5、有这样一道题:“栖树一群鸦,鸦树不知数;三只栖一树,五只没去处;五只栖一树,闲了一棵树;请你动动脑,算出鸦树数.”前三句的意思是:一群乌鸦在树上栖息,若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦.请你动动脑,该问题中乌鸦有_________只.
三、解答题(5小题,每小题10分,共计50分)
1、一艘轮船在相距120千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,从乙地到甲地逆流航行用10小时.(请列方程或方程组解答)
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
2、若m是一个两位数,与它相邻的11的整数倍的数为它的“邻居数”,与它最接近的“邻居数”为“最佳邻居数”,m的“最佳邻居数”记作n,令;
若m为一个三位数,它的“邻居数”则为111的整数倍,依次类推.
例如:50的“邻居数”为44与55,,,
∵,∴55为50的“最佳邻居数”,∴,
再如:492的“邻居数”为444和555,,,
∵,∴444是492的“最佳邻居数”.
(1)求和的值;
(2)若p为一个两位数,十位数字为a,个位数字为b,且.求p的值.
3、解下列方程组:
(1)
(2)
4、(1)若在方程2x-y=的解中,x,y互为相反数,求xy的值.
(2)已知是方程组 的解,求m+n的值.
5、解方程组:.
-参考答案-
一、单选题
1、D
【解析】
【分析】
先把方程的②×5得到③,然后用③-①即可得到答案.
【详解】
解:,
把②×5得:③,
用③ -①得:,
故选D.
【点睛】
本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.
2、B
【解析】
【分析】
设合伙人数为人,牛价为 钱,根据“若每人出6钱,还差40钱;若每人出8钱,多余4钱,”列出方程组,即可求解.
【详解】
解:设合伙人数为人,牛价为 钱,根据题意得:
.
故选:B
【点睛】
本题主要考查了二元一次方程组的应用,明确题意,准确得到等量关系是解题的关键.
3、B
【解析】
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
4、C
【解析】
【分析】
先求出方程组的解,由方程组的解为正整数分析得出a值.
【详解】
解:解方程组,得,
∵方程组的解为正整数,
∴a=0时,;a=2时,,
∴满足条件的所有整数a的和为0+2=2.
故选:C.
【点睛】
此题考查了已知二元一次方程组的解求参数,解题的关键是求出方程组的解,由方程组解的情况分析得到a的值.
5、C
【解析】
【分析】
根据二元一次方程的定义,即含有两个未知数,且未知数的次数均为1,即可求解.
【详解】
解:∵是二元一次方程,
∴ ,且 ,
解得: .
故选:C
【点睛】
本题主要考查了二元一次方程的定义,解题的关键是熟练掌握含有两个未知数,且未知数的次数均为1.
6、B
【解析】
【分析】
设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.
【详解】
解:设绳子长x尺,长木长y尺,
依题意,得:,
故选:B.
【点睛】
本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
7、C
【解析】
【分析】
设连续搭建三角形x个,连续搭建正六边形y个,根据搭建三角形和正六边形共用了2018根火柴棍,并且三角形的个数比正六边形的个数多7个,列方程组求解即可.
【详解】
解:设连续搭建等边三角形x个,连续搭建正六边形y个,
由题意,得,
解得.
故选C.
【点睛】
本题考查了二元一次方程组的应用及图形的变化类问题,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.
8、B
【解析】
【详解】
解:,
,
.
故选:B.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.
9、B
【解析】
【分析】
由题意直接利用加减消元法求出二元一次方程组的解即可得出答案.
【详解】
解:,
得③,
得④,
③+④得,解得,
将代入②得,解得,
所以是二元一次方程组的解.
故选:B.
【点睛】
本题考查解二元一次方程组,注意消元思想的运用,消元的方法有:代入消元法与加减消元法.
10、C
【解析】
【分析】
根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.
【详解】
解:A、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;
B、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;
C、该方程组符合二元一次方程组的定义,故本选项符合题意;
D、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;
故选:C.
【点睛】
本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.
二、填空题
1、5
【解析】
【分析】
根据二元一次方程的定义(如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程)列出方程求解可得,n﹣2,然后代入代数式求值即可得.
【详解】
解:由题意得:,,
解得:,,
,
故答案为:5.
【点睛】
题目主要考查二元一次方程的定义及求代数式的值,深刻理解二元一次方程的定义是解题关键.
2、10
【解析】
【分析】
根据总分=答对题数×3-答错题数×1+不答题数×0,设答对的题数为x道,答错的题数为y道,可列出方程组,求出解.
【详解】
解:设答对题数为x道,答错的题数为y道,则不答的题数为(y+2)道.
由题意得:,
解得:,
∴答对了10道题,
故答案为:10.
【点睛】
此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
3、4
【解析】
【分析】
设兑换成面值5元的人民币x张,面值10元的人民币y张,根据兑换成零钱的总价值为50元,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出共有4种兑换方案.
【详解】
设兑换成面值5元的人民币x张,面值10元的人民币y张,
依题意得:5x+10y=50,
∴x=10﹣2y.
又∵x,y均为正整数,
∴或或或,
∴共有4种兑换方案.
故答案为:4.
【点睛】
本题考查了列二元一次方程组,利用二元一次方程组的解进行方案设计的方法,优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果.
4、
【解析】
【分析】
根据三种饮料的数量比、单价比,可以按照比例设未知数,即10月份A、B、C三种饮料的销售的数量和单价分别为2a、3a、4a;b、2b、3b.可以表示出10月份各种饮料的销售额和总销售额.因问题中涉及到A的10月销售数量,因此可以设11月份A的销售量为x,再根据A11月份的单价求出11月份A的销售额和C的销售额.可以根据饮料增加的销售额占11月份销售总额比,用未知数列出等式关键即可求解出.
【详解】
解:由题意可设10月份、、三种饮料的销售的数量为、、,单价为、、;11月份的销售量为,
则11月份、、三种饮料的销售的数量为、、;
月份奶茶销售额为,
11月份种奶茶的销售额为:,
、奶茶的销售额之比是,
月份种奶茶的销售额为:,
月份种奶茶的价格为,
月份三种奶茶的单价之和比10月份增加,
月份三种奶茶的单价之和为,
月份种奶茶的单价为:,
奶茶增加的销售额占11月份销售总额的,
,解得,
,
.
即11月份、奶茶的单价之比为为.
故答案为:.
【点睛】
此题考查的是二元一次方程的应用,掌握用代数式表示每个参数,并用整体法解题是关键.
5、20
【解析】
【分析】
设乌鸦有x只,树y棵,直接利用若每棵树上栖息3只,那么有5只没处栖息;若每棵树上栖息5只,那么有一棵树上没有乌鸦列出方程组,进而得出答案.
【详解】
解:设乌鸦x只,树y棵.依题意可列方程组:
.
解得,
所以,乌鸦有20只
故答案为:20.
【点睛】
此题主要考查了二元一次方程组的应用,正确得出方程组是解题关键.
三、解答题
1、 (1)静水中的速度是16千米/小时,水流速度是4千米/小时
(2)75千米
【解析】
【分析】
(1)设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,根据路程=速度×时间,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,根据时间=路程÷速度,即可得出关于a的一元一次方程,解之即可得出结论.
【小题1】
解:设该轮船在静水中的速度是x千米/小时,水流速度是y千米/小时,
依题意,得:,
解得:,
答:该轮船在静水中的速度是16千米/小时,水流速度是4千米/小时.
【小题2】
设甲、丙两地相距a千米,则乙、丙两地相距(120-a)千米,
依题意,得:,
解得:a=75,
答:甲、丙两地相距75千米.
【点睛】
本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.
2、 (1),
(2)p的值为81.
【解析】
【分析】
(1)根据“最佳邻居数”的定义计算即可;
(2)先确定的范围,再分类讨论,确定“最佳邻居数”,根据题意列出方程求解即可.
(1)
解:∵83的邻居数为77和88,
∴,.
∵,
∴88是83的最佳邻居数,
∴.
∵268的邻居数为222和333,
∴,.
∵,
∴222是268的最佳邻居数.
∴.
(2)
解:∵,且,,
∴必大于34,
∴不会在300与333之间,.
情况1,当的最佳邻居数为333时,,
∴,
∴.
∵,,且为整数,
∴.
情况2,当的最佳邻居数为444时,,
∴,
∴.
∵,,且为整数此方程无解.
综上所述,p的值为81.
【点睛】
本题考查了新定义和二元一次方程,解题关键是准确理解题意,根据题意得出二元一次方程,求解正整数解.
3、 (1)
(2)
【解析】
【分析】
(1)用代入法即可完成解答;
(2)先把方程组中的两个方程分别化简,再用加减法即可完成解答.
(1)
把①代入②得:
解得:x=1
把x=1代入①中,得y=2
所以原方程组的解为;
(2)
原方程组化简为
③−④得:5x=20
解得:x=4
把x=4代入④得:y=5.5
原方程组的解为.
【点睛】
本题考查了解二元一次方程组,根据方程组的特点灵活选取适当的方法解方程组;当方程组中的两个方程有括号或分母时,往往先把每个方程化简,再用代入法或加减法解.
4、(1);(2)
【解析】
【分析】
(1)根据互为相反数把解代入方程得2x+x=,解一元一次方程,解得x=,再求xy的值.
(2)把解代入方程组求出二元一次方程组的解再求m+n即可.
【详解】
(1)∵x,y互为相反数,
∴y=-x,
将y=-x代入方程2x-y=中,
得2x+x=,
解得x=,
∴y=.
∴xy=.
(2)∵是方程组的解,
∴
解得
∴m+n=-1.
【点睛】
本题考查互为相反数,二元一次方程组的解,解一元一次方程,代数式的值,掌握互为相反数,二元一次方程组的解,解一元一次方程,代数式的值是解题关键.
5、
【解析】
【详解】
解:,
①②,得,
解得:,
把代入①,得,
解得:,
所以方程组的解是.
【点睛】
本题考查了解二元一次方程组,解题的关键是能把二元一次方程组转化成一元一次方程.
数学七年级下册第六章 二元一次方程组综合与测试测试题: 这是一份数学七年级下册第六章 二元一次方程组综合与测试测试题,共19页。试卷主要包含了已知,则等内容,欢迎下载使用。
初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题: 这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试同步测试题,共21页。试卷主要包含了下列说法正确的是,下列说法中不正确的是,下列命题不正确的是,下列命题中,是真命题的是等内容,欢迎下载使用。
初中第六章 二元一次方程组综合与测试课堂检测: 这是一份初中第六章 二元一次方程组综合与测试课堂检测,共19页。试卷主要包含了若关于x,在一次爱心捐助活动中,八年级等内容,欢迎下载使用。