初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题
展开
这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试当堂检测题,共20页。试卷主要包含了已知二元一次方程组则,若关于x,如图,9个大小等内容,欢迎下载使用。
冀教版七年级下册第六章二元一次方程组专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、二元一次方程的解可以是( )A. B. C. D.2、已知是二元一次方程的一组解,则m的值是( )A. B.3 C. D.3、下列方程中,是二元一次方程组的是( )A. B. C. D.4、已知二元一次方程组则( )A.6 B.4 C.3 D.25、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A. B. C. D.6、若关于x、y的二元一次方程的解,也是方程的解,则m的值为( )A.-3 B.-2 C.2 D.无法计算7、我们在解二元一次方程组时,可将第二个方程代入第一个方程消去得从而求解,这种解法体现的数学思想是( )A.转化思想 B.分类讨论思想 C.数形结合思想 D.公理化思想8、如图,9个大小、形状完全相同的小长方形,组成了一个周长为46的大长方形,若设小长方形的长为,宽为,则可列方程为( )A. B.C. D.9、已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值为( )A.2 B.1 C.﹣1 D.﹣210、若xa﹣b﹣2ya+b﹣2=0是二元一次方程,则a,b的值分别是( )A.1,0 B.0,﹣1 C.2,1 D.2,﹣3第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、红星体育用品厂生产了一种体育用品礼品套装,已知该套装一套包含2个足球,4个篮球,6副羽毛球.一爱心企业向该厂订购了一批礼品套装,捐赠给希望小学,以丰富师生的课外活动,他们需要厂家在10天内生产完该套装并交货.红星体育用品厂将工人分为A、B、C三个组,分别生产足球、篮球、羽毛球,他们于某天零点开始工作,每天24小时轮班连续工作.(假设每组每小时工作效率不变).若干天后的零点A组完成任务,再过几天后(不小于1天)的中午12点,B组完成任务,再过几天(不小于1天)后的下午6点(即当天18点),C组完成任务.已知A、B、C三个组每天完成的任务数分别是240个,320个,320副,则该爱心企业一共订购了__________套体育用品礼品套装.2、某服装厂生产一批某种款式的秋装,已知每2m的某种布料可做上衣的衣身3个或衣袖5只,现计划用132m这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料做衣身和衣袖,才能使做的衣身和衣袖恰好配套?解:设用xm布料做衣身,用ym布料做衣袖.根据题意得:解得:___________所以,用60m布料做衣身,用72m布料做衣袖,才能使衣身和衣袖恰好配套.3、一年一度的南开校运会即将开幕,“向阳”班的全体同学正在操场上进行开幕式的队列编排.如果安排三个同学走在队列前方举班牌和班旗,则剩下的同学正好可以编排成每行5人的长方形方阵.如果不举班旗,只由班主任兼数学老师李老师举班牌,并再邀请语文,英语和物理三科的任课老师一起参加,则这三位任课老师和所有同学正好可以编排成每行6人的长方形方阵.已知“向阳”班的学生人数超过40人但又不多于80人,则“向阳”班共有学生______名.4、一个两位数,个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27,则原来的两位数是_________.5、如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元/(t·km),铁路运价为1.2元/(t·km),这两次运输共支出公路运费15 000元,铁路运费97 200元.这批产品的销售款比原料费与运输费的和多多少元?解:设产品重x吨,原料重y吨.由题意可列方程组 解这个方程组,得___________因为毛利润-销售款-原料费-运输费所以这批产品的销售款比原料费与运输的和多___________元.三、解答题(5小题,每小题10分,共计50分)1、解方程组(1)(2)2、解下列方程组:(1)(2)3、解方程组:(1)(2)4、已知方程(k+2)x+(k-6)y=k+8是关于x,y的方程.(1)k为何值时,方程为一元一次方程?(2)k为何值时,方程为二元一次方程?5、解方程组: -参考答案-一、单选题1、A【解析】【分析】把各个选项答案带进去验证是否成立即可得出答案.【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A.【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解.2、A【解析】【分析】把代入5x+3y=1即可求出m的值.【详解】把代入5x+3y=1,得10+3m=1,∴m=-3,故选A.【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.3、B【解析】【分析】根据二元一次方程组的定义解答.【详解】解:A中含有两个未知数,含未知数的项的最高次数为2,故不符合定义;B符合定义,故是二元一次方程组;C中含有分式,故不符合定义;D含有三个未知数,故不符合定义;故选:B.【点睛】此题考查了二元一次方程组定义:含有两个未知数,且含有未知数的项的最高次数为2的整式方程是二元一次方程组,熟记定义是解题的关键.4、D【解析】【分析】先把方程的②×5得到③,然后用③-①即可得到答案.【详解】解:,把②×5得:③,用③ -①得:,故选D.【点睛】本题主要考查了二元一次方程组和代数式求值,解题的关键在于能够观察出所求式子与二元一次方程组之间的关系.5、D【解析】【分析】利用加减消元法逐项判断即可.【详解】A. ,可以消去x,不符合题意;B. ,可以消去y,不符合题意;C. ,可以消去x,不符合题意;D. ,无法消元,符合题意;故选:D【点睛】本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.6、C【解析】【分析】将m看作已知数值,利用加减消元法求出方程组的解,然后代入求解即可得.【详解】解:,得:,解得:,将代入①可得:,解得:,∴方程组的解为:,∵方程组的解也是方程的解,代入可得,解得,故选:C.【点睛】题目主要考查解二元一次方程组求参数,熟练掌握解二元一次方程组的方法是解题关键.7、A【解析】【分析】通过代入消元法消去未知数x,将二元一次方程转化为一元一次方程.【详解】解:在解二元一次方程组时,将第一个方程代入第二个方程消去x得22y+y=10,即4y+y=10,从而将二元一次方程降次转化为一元一次方程求解,这种解法体现的数学思想是:转化思想,故选:A.【点睛】本题考查了解二元一次方程组,理解消元法(加减消元法和代入消元法)解二元一次方程组的方法是解题关键.8、A【解析】【分析】根据图形可知,大长方形的长=7个小长方形的宽=2小长方形的长,大长方形的宽=小长方形的长+小长方形的宽,由此即可列出方程.【详解】解:设小长方形的长为x,宽为y,由题意得: 或,故选A.【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,解题的关键在于能够正确理解题意和掌握长方形周长公式.9、A【解析】【分析】把x=2,y=﹣1代入方程ax+y=3中,得到2a-1=3,解方程即可.【详解】∵x=2,y=﹣1是方程ax+y=3的一组解,∴2a-1=3,解得a=2,故选A.【点睛】本题考查了二元一次方程的解即使方程两边相等的一组未知数的值,一元一次方程的解法,正确理解定义,规范解一元一次方程是解题的关键.10、C【解析】【分析】根据二元一次方程的定义,可得到关于a,b的方程组,解出即可求解.【详解】解:∵xa﹣b﹣2ya+b﹣2=0是二元一次方程,∴ ,解得:. 故选:C【点睛】本题主要考查了二元一次方程的定义和解二元一次方程组,熟练掌握相关知识点是解题的关键.二、填空题1、360【解析】【分析】由套装中包含足球、篮球、羽毛球的数量可得出:生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,根据三种体育用品数量之间的关系,即可得出关于x,y,z的三元一次方程组,解之可得出2z=3y,结合y,z均为一位正整数可得出z为3的倍数,分别代入z=3,z=6,z=9求出x值,再结合该套装一套包含2个足球即可求出该企业订购体育用品礼品套装的数量.【详解】解:∵该套装一套包含2个足球,4个篮球,6副羽毛球,∴生产篮球的数量为足球的2倍,羽毛球的数量为足球的3倍.设A组生产了x天,B组生产了y天多12小时,C组生产了z天多18小时,依题意得:,∴,∴2z=3y.又∵x,y,z均为一位正整数,∴z为3的倍数.当z=3时,x=,不合题意,舍去;当z=6时,x=3,此时y=4;当z=9时,x=,不合题意,舍去.∴该爱心企业订购体育用品礼品套装的数量为240×3÷2=360(套).故答案为:360.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.2、【解析】略3、63【解析】【分析】设每行5人的队列有a列,每行6人的队列有b列,班级共x人,列方程组,得到队列的人数是30的倍数,进而得到队列人数为60人,据此求出答案.【详解】解:设每行5人的队列有a列,每行6人的队列有b列,班级共x人,则,∴队列的人数是5的倍数,也是6的倍数,即30的倍数,∵班级的学生人数超过40人但又不多于80人,∴队列人数为60人,∴班级人数为x=60+3=63人,故答案为:63.【点睛】此题考查了三元一次方程组的应用,倍数的确定,正确理解题意得到队列人数为30的倍数是解题的关键.4、58【解析】【分析】设原来的两位数的十位数字为x,个位数字为y,根据“个位数字和十位数字的和是13,如果将个位数字和十位数字对调后得到的新数比原数大27”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(10x+y)中即可求出结论.【详解】解:设原来的两位数的十位数字为x,个位数字为y,依题意得:,解得:,∴10x+y=58.故答案为:58.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5、 14【解析】略三、解答题1、 (1)(2)【解析】【分析】(1)利用加减消元法解方程组即可;(2)利用代入消元法解方程组即可.(1)解: 把①代入②得:,即,解得,把代入到①中得:,∴方程组的解为:;(2)解: ,用①×2-②得:,解得,把代入到①中得:,解得∴方程组的解为:.【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟知解二元一次方程组的方法.2、 (1)(2)【解析】【分析】(1)用代入法即可完成解答;(2)先把方程组中的两个方程分别化简,再用加减法即可完成解答.(1)把①代入②得:解得:x=1把x=1代入①中,得y=2所以原方程组的解为;(2)原方程组化简为③−④得:5x=20解得:x=4把x=4代入④得:y=5.5原方程组的解为.【点睛】本题考查了解二元一次方程组,根据方程组的特点灵活选取适当的方法解方程组;当方程组中的两个方程有括号或分母时,往往先把每个方程化简,再用代入法或加减法解.3、 (1)(2)【解析】【分析】根据加减消元的方法求解即可.(1)解:,由①-②得:, ∴,把代入②,解得:,∴方程组的解为;(2)解:方程组整理得:,由①+②,得:,∴,把代入①,得:,∴方程组的解为.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4、 (1)k=-2或k=6;(2)k≠-2且k≠6时【解析】【分析】(1)根据一元次方程的定义,含有一个未知数,并且含未知数的项的次数为1的整式方程可得或 ,解方程组得;(2)根据方程是二元一次方程方程的定义含有两个未知数,含未知数的项的次数为1的整式方程可得,解不等式组即可.【小题1】解:∵方程是一元一次方程,∴或 ∴解得k=-2或k=6.∴当k=-2或k=6时,该方程是一元一次方程.【小题2】解:∵方程是二元一次方程,∴∴解得k≠-2且k≠6.∴当k≠-2且k≠6时,该方程是二元一次方程.【点睛】本题考查一元一次方程的定义,二元一次方程方程的定义,掌握一元一次方程的定义,二元一次方程方程的定义是解题关键.5、【解析】【分析】根据加减消元法求解即可.【详解】解:两式相加消元得,∴,∴方程组的解为:【点睛】本题考查了二元一次方程组.解题的关键是利用消元法求解.
相关试卷
这是一份冀教版七年级下册第六章 二元一次方程组综合与测试课堂检测,共17页。
这是一份数学七年级下册第六章 二元一次方程组综合与测试巩固练习,共19页。试卷主要包含了有下列方程组,有下列方程等内容,欢迎下载使用。
这是一份七年级下册第六章 二元一次方程组综合与测试达标测试,共17页。试卷主要包含了学校计划用200元钱购买,用代入消元法解关于等内容,欢迎下载使用。