![2022年冀教版七年级下册第七章相交线与平行线达标测试练习题第1页](http://www.enxinlong.com/img-preview/2/3/12717420/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第七章相交线与平行线达标测试练习题第2页](http://www.enxinlong.com/img-preview/2/3/12717420/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版七年级下册第七章相交线与平行线达标测试练习题第3页](http://www.enxinlong.com/img-preview/2/3/12717420/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第七章 相交线与平行线综合与测试同步训练题
展开
这是一份数学七年级下册第七章 相交线与平行线综合与测试同步训练题,共23页。试卷主要包含了下列语句正确的个数是,下列说法正确的是,下列命题中是假命题的是,下列命题中,是真命题的是,如图所示,直线l1∥l2,点A等内容,欢迎下载使用。
冀教版七年级下册第七章相交线与平行线达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、以下命题是假命题的是( )A.的算术平方根是2B.有两边相等的三角形是等腰三角形C.三角形三个内角的和等于180°D.过直线外一点有且只有一条直线与已知直线平行2、如图,,交于点,,,则的度数是( )A.34° B.66° C.56° D.46°3、如图,直线a、b被直线c所截,下列说法不正确的是( )A.1与5是同位角 B.3与6是同旁内角C.2与4是对顶角 D.5与2是内错角4、下列语句正确的个数是( )(1)经过平面内一点有且只有一条直线与已知直线垂直;(2)经过平面内一点有且只有一条直线与已知直线平行;(3)在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(4)在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相平行.A.1个 B.2个 C.3个 D.4个5、下列说法正确的是 ( )A.不相交的两条直线是平行线.B.如果线段AB与线段CD不相交,那么直线AB与直线CD平行.C.同一平面内,不相交的两条射线叫做平行线.D.同一平面内,没有公共点的两条直线是平行线.6、下列命题中是假命题的是( )A.两直线平行,同位角相等 B.同旁内角互补,两直线平行C.垂直于同一直线的两直线平行 D.对顶角相等7、下列命题中,是真命题的是( )A.两直线平行,同旁内角相等 B.内错角相等,两直线平行C.直角三角形的两锐角互补 D.三角形的一个外角大于任何一个内角8、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )A. B.C. D.9、如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( )A.S1>S2 B.S1=S2 C.S1<S2 D.不确定10、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P点照射到抛物线上的光线等反射以后沿着与直线平行的方向射出,若,,则的度数为( )°A. B. C. D.第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线,三角尺(30°,60,90°)如图摆放,若∠1=52°,则∠2的度数为 _____.2、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.3、如图,直线AB、CD相交于点O,∠AOD=100°,那么∠BOD=______.4、完成下面的证明:看图填空:已知如图,于,于,,求证:平分.证明:于,于G(_____),,(_____).(_____).(_____)._____(_____),_____(_____).又(已知),(_____),平分(_____).5、如图,AC平分∠DAB,∠1=∠2,试说明.证明:∵AC平分∠DAB( ),∴∠1=∠______( ),又∵∠1=∠2( ),∴∠2=∠______( ),∴AB______( ).三、解答题(5小题,每小题10分,共计50分)1、已知:如图,ABCDEF,点G、H、M分别在AB、CD、EF上.求证:. 2、已知A,B,C三点如图所示,(1)画直线,线段,射线,过点C画的垂线段;(2)若线段,,,,利用三角形面积公式可以得到C点到的距离是_________.3、如图,直线AB与CD相交于点O,∠AOM=90°.(1)如图1,若OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.4、如图,在△ABC中,∠BAC>90°,根据下列要求作图并回答问题.(1)过点C画直线lAB;(2)过点A分别画直线BC和直线l的垂线段,垂足分别为点D、E,AE交BC千点F;(3)线段 的长度是点A到BC的距离.(不要求写画法,只需写出结论即可)5、已知:如图,中,点、分别在、上,交于点, ,.(1)求证:;(2)若平分,,求的度数. -参考答案-一、单选题1、A【解析】【分析】分别利用算术平方根、等腰三角形的判定、三角形内角和公式、平行的相关内容,进行分析判断即可.【详解】解:A、的算术平方根应该是, A是假命题,B、有两边相等的三角形是等腰三角形,B是真命题,C、三角形三个内角的和等于180°,C是真命题,D、过直线外一点有且只有一条直线与已知直线平行,D是真命题,故选:A.【点睛】本题主要是考查了真假命题,正确的命题为真命题,错误的命题为假命题,根据所学知识,对各个命题的正确与否进行分析,这是解决该题的关键.2、C【解析】【分析】由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.【详解】解:∵,,∴,∵,∴,故选:C【点睛】本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.3、D【解析】【分析】根据同位角、对顶角、同旁内角以及内错角的定义对各选项作出判断即可.【详解】解:A、∠1与∠5是同位角,故本选项不符合题意;B、∠3与∠6是同旁内角,故本选项不符合题意.C、∠2与∠4是对顶角,故本选项不符合题意;D、∠5与2不是内错角,故本选项符合题意.故选:D.【点睛】本题主要考查了同位角、对顶角、同旁内角、内错角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4、C【解析】【分析】由题意直接根据平行公理及平行线的判定定理进行判断即可.【详解】解:经过平面内一点有且只有一条直线与已知直线垂直,故(1)正确;经过直线外一点有且只有一条直线与已知直线平行,故(2)不正确;平面内,平行具有传递性,故(3)正确;同一平面内,如果两条直线都与第三条直线垂直,则同位角(内错角)相等,这两条直线互相平行,故(4)正确,∴正确的有(1)、(3)、(4),故选:C.【点睛】本题考查平行公理及平行线的判定定理,熟练掌握理解平行线公理及判定定理是解题的关键.5、D【解析】【分析】根据平行线的定义逐项分析即可.【详解】A、同一平面内不相交的两条直线是平行线,故此说法错误;B、两条线段不相交也可以不平行,故此说法错误;C、同一平面内,不相交的两条射线可以平行,也可以既不平行也不相交,故此说法错误;D、同一平面内,没有公共点的两条直线是平行线,此说法正确,故选D.【点睛】本题考查了平行线的定义,理解此定义是关键,属于概念基础题.6、C【解析】【分析】根据平行线的性质与判定,对顶角的性质,逐项分析判断即可【详解】解:A. 两直线平行,同位角相等,故该选项是真命题,不符合题意; B. 同旁内角互补,两直线平行,故该选项是真命题,不符合题意;C. 同一平面内,垂直于同一直线的两直线平行,故该选项是假命题,符合题意; D. 对顶角相等,故该选项是真命题,不符合题意;故选C【点睛】本题考查了真假命题的判断,掌握平行线的性质与判定,对顶角的性质是解题的关键.7、B【解析】【分析】利用三角形的性质、平行线的性质和判定进行判断即可.【详解】解:两直线平行,同旁内角互补,故A是假命题;内错角相等,两直线平行,故B是真命题;直角三角形的两锐角互余,故C是假命题;三角形的一个外角大于任何一个和它不相邻的内角,故D是假命题;故答案为B.【点睛】本题考查的是命题的真假判断,熟练准确掌握基础知识是解答本题的关键.8、D【解析】【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF=FD,BE=EC,AB=EF=CD,∴四边形ABEF向右平移可以与四边形EFCD重合,∴平行四边形ABCD是平移重合图形.同理可证,正方形,长方形,也是平移重合图形,故选项A、B、C不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D符合题意;故选D.【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.9、B【解析】【分析】由题意根据两平行线间的距离处处相等,可知△ABC和△ABD等底等高,结合三角形的面积公式从而进行分析即可.【详解】解:因为l1∥l2,所以C、D两点到l2的距离相等,即△ABC和△ABD的高相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.故选:B.【点睛】本题考查平行线间的距离以及三角形的面积,解题时注意等高等底的两个三角形的面积相等.10、C【解析】【分析】根据平行线的性质可得,进而根据即可求解【详解】解:故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.二、填空题1、##度【解析】【分析】如图,标注字母,过作 再证明证明从而可得答案.【详解】解:如图,标注字母,过作 ∠1=52°, 故答案为:【点睛】本题考查的是平行公理的应用,平行线的性质,掌握“两直线平行,内错角相等”是解本题的关键.2、①【解析】【分析】根据相交线与平行线中的一些概念、性质判断,得出结论.【详解】①等角的余角相等,故正确;②中,需要前提条件:过直线外一点,故错误;③中,相等的角不一定是对顶角,故错误;④中,仅当两直线平行时,同位角才相等,故错误;⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.故答案为:①.【点睛】本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.3、80°##80度【解析】【分析】根据邻补角的定义,即可解答.【详解】解:∵∠AOD+∠BOD=180°,∴∠BOD =180°-∠AOD=180°-100°=80°,故答案为:80°.【点睛】本题考查了邻补角的定义,如果两个角有一条公共边,其余两边互为反向延长线,那么这两个角互为邻补角,互为邻补角两个角的和等于180°.4、已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义【解析】【分析】根据平行线的性质,平行线的判定等相关知识解答即可.【详解】证明:于,于(已知),,(垂直定义).(等量代换).(同位角相等,两直线平行).(两直线平行,内错角相等),(两直线平行,同位角相等).又(已知),(等量代换),平分(角平分线的定义).故答案为:已知;垂直定义;等量代换;同位角相等,两直线平行;3,两直线平行,内错角相等;,两直线平行,同位角相等;等量代换;角平分线的定义.【点睛】本题考查了平行线的性质和判定,垂直即两条直角相交所成的四个角中,有一个直角;角的平分线即从角的顶点出发的射线把角分成两个相等的角,熟练掌握平行线的性质和判定是解题的关键.5、 已知 3 角平分线的定义 已知 3 等量代换 CD 内错角相等,两直线平行【解析】【分析】根据平行线证明对书写过程的要求和格式填写即可.【详解】证明:∵AC平分∠DAB(已知),∴∠1=∠ 3 (角平分线的定义),又∵∠1=∠2(已知),∴∠2=∠ 3 (等量代换),∴AB∥CD (内错角相等,两直线平行).故答案为:已知;3;角平分线的定义;已知;3;等量代换;CD;内错角相等,两直线平行【点睛】本题主要考查平行线证明的书写,正确的逻辑推理和书写格式是解题的关键.三、解答题1、见解析【解析】【分析】由AB∥CD∥EF可得,,,即可证明.【详解】证明:∵AB∥CD(已知)∴(两直线平行,内错角相等) 又 ∵CD∥EF(已知)∴(两直线平行,内错角相等) ∵(已知)∴(等式性质)【点睛】本题主要考查平行线的性质,准确观察图形,推出角之间的关系是解题关键.2、 (1)作图见解析(2)【解析】【分析】(1)过画直线 连接 以为端点画射线 再利用三角尺过作 垂足为 从而可得答案;(2)先求解的面积为6,再利用 再解方程即可得到答案.(1)解:如图,直线 线段射线 垂线段即为所求作的直线,线段,射线,垂线段.(2)解: 解得: 所以C点到的距离是 故答案为:【点睛】本题考查的是画直线,线段,射线,垂线段,以及点到直线的距离的含义,掌握“简单几何图形的作图及利用等面积法求解点到直线的距离”是解本题的关键.3、 (1)135°(2)54°【解析】【分析】(1)由∠AOM=90°及角平分线的定义可得∠AOC的度数,再互补关系即可求得结果;(2)由已知设∠NOB=x°,则∠BOC=4x°,∠CON=3x°,由角平分线的定义及垂直的条件可得关于x的方程,解方程即可求得结果.(1)∵∠AOM=90°,OC平分∠AOM∴∠AOC=∠AOM=×90°=45°∵∠AOC+∠AOD=180°∴∠AOD=180°﹣∠AOC=180°﹣45°=135°即∠AOD的度数为135°(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°∵OM平分∠CON∴∠COM=∠MON=∠CON=x°∵∠BOM=x°+x°=90°∴x=36∴∠MON=x°=×36°=54°即∠MON的度数为54°【点睛】本题考查了角平分线的定义、垂直定义、互余与互补的定义等知识,运用了方程思想,熟练运用这些知识是关键.4、 (1)见解析(2)见解析(3)AD【解析】【分析】(1)根据几何语言画出对应的几何图形;(2)根据几何语言画出对应的几何图形;(3)根据点到直线的距离的定义求解.(1)如图,直线l为所作;(2)如图,AD、AE为所作;(3)线段AD的长度为点A到BC的距离.故答案为:AD.【点睛】此题考查了点到直线的距离,用直尺、三角板画平行线,作图—复杂作图.正确掌握各作图方法是解题的关键。5、(1)见解析;(2)72°【解析】【分析】(1)等量代换得出∠3=∠DFE,平行线的判定得出EF//AB,可以推出∠ADE=∠B,即可判断结论;(2)由平分线的定义得出∠ADE=∠EDC=∠B,由平角的定义列出关于∠5+∠ADE+∠EDC==180°,求出∠B的度数,即可得出∠ADC的度数,由EF//AB即可求出∠2的度数.【详解】解:(1)∵,∠2+∠DFE=180°,∴∠3=∠DFE,∴EF//AB,∴∠ADE=∠1,又∵,∴∠ADE=∠B,∴DE//BC,(2)∵平分,∴∠ADE=∠EDC,∵DE//BC,∴∠ADE=∠B,∵∴∠5+∠ADE+∠EDC==180°,解得:,∴∠ADC=2∠B=72°,∵EF//AB,∴∠2=∠ADC=180°-108°=72°,【点睛】本题考查了平行线的判定和性质、邻补角、角平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
相关试卷
这是一份2021学年第七章 相交线与平行线综合与测试课时作业,共22页。
这是一份初中数学第七章 相交线与平行线综合与测试精练,共20页。试卷主要包含了如图,直线a,如图,下列条件中能判断直线的是,下列命题中,是假命题的是等内容,欢迎下载使用。
这是一份初中第七章 相交线与平行线综合与测试课时作业,共21页。试卷主要包含了下列语句正确的个数是,如图,下列条件中能判断直线的是,如图,直线AB等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)