终身会员
搜索
    上传资料 赚现金

    2022年最新强化训练冀教版七年级下册第七章相交线与平行线定向训练练习题(含详解)

    立即下载
    加入资料篮
    2022年最新强化训练冀教版七年级下册第七章相交线与平行线定向训练练习题(含详解)第1页
    2022年最新强化训练冀教版七年级下册第七章相交线与平行线定向训练练习题(含详解)第2页
    2022年最新强化训练冀教版七年级下册第七章相交线与平行线定向训练练习题(含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习

    展开

    这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习,共25页。试卷主要包含了直线m外一点P它到直线的上点A等内容,欢迎下载使用。
    冀教版七年级下册第七章相交线与平行线定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  0分)一、单选题(10小题,每小题0分,共计0分)1、如图,直线相交于点平分,给出下列结论:①当时,;②的平分线;③若时,;④.其中正确的结论有(       A.4个 B.3个 C.2个 D.1个2、把直线a沿水平方向平移4cm,平移后的线为直线b,则直线a与直线b之间的距离为(       A.等于4cm B.小于4cmC.大于4cm D.不大于4cm3、下列各组图形中,能够通过平移得到的一组是(       A. B. C.  D.4、北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的(如图).下面四个图案中,可以通过平移图案得到的是(       A. B. C. D.5、直线m外一点P它到直线的上点ABC的距离分别是6cm、5cm、3cm,则点P到直线m的距离为(          A.3cm B.5cm C.6cm D.不大于3cm6、已知∠α的两边分别平行于∠β的两边.若∠α60°,则∠β的大小为(  )A.30° B.60° C.30°或60° D.60°或120°7、如图,直线ab被直线c所截,下列条件不能判定直线ab平行的是(  )A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°8、如图,∠1=∠2,∠3=25°,则∠4等于(       A.165° B.155° C.145° D.135°9、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为(  )A.164°12' B.136°12' C.143°88' D.143°48'10、下面的四个图形中,能够通过基本图形平移得到的图形有(     A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题  100分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线ABCD相交于点O,∠AOD=100°,那么∠BOD=______.2、如图,一条公路两次转弯后,和原来的方向相同,如果第一次的拐角,则第二次的拐角是__3、如图,已知∠1=30°,∠2或∠3满足条件_________,则ab4、将长度为5cm的线段向上平移10cm,所得线段的长度是_______cm.5、一般地,将一个图形依次沿两个坐标轴方向平移所得到的图形,可以通过将原来的图形作_________平移得到. 对一个图形进行平移,这个图形上所有点的坐标都要发生相应的_________;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.三、解答题(5小题,每小题10分,共计50分)1、如图,所有小正方形的边长都为1个单位,A、B、C均在格点上.(1)过点C画线段AB的平行线CF(2)过点A画线段BC的垂线,垂足为G(3)过点A画线段AB的垂线,交BC于点H(4)线段       的长度是点H到直线AB的距离;(5)线段AG、AH、BH的大小关系是          (用“<”连接),理由是       2、如图,的三个顶点ABC在正方形网格中,每小方格的边长都为1cm.请在方格纸上画图并回答下列问题:(1)延长线段AB到点D,使(2)过C点画AB的垂线,垂足为点E(3)过A点画直线,交直线CE于点F(4)点C到直线AB的距离为线段           的长度.3、如图,直线ABCD相交于点O,若OA平分∠COE,求∠DOE的度数.4、如图1,直线ACBD,直线ACBD及直线AB把平面分成(1)、(2)、(3)、(4)、(5)、(6)六个部分.点P是其中的一个动点,连接PAPB,观察∠APB、∠PAC、∠PBD三个角.规定:直线ACBDAB上的各点不属于(1)、(2)、(3)、(4)、(5)、(6)六个部分中的任何一个部分.(1)当动点P落在第(1)部分时,可得:∠APB=∠PAC+∠PBD,请阅读下面的解答过程,并在相应的括号内填注理由过点PEFAC,如图2因为ACBD(已知),EFAC(所作),所以EFBD______.所以∠BPE=∠PBD______.同理∠APE=∠PAC因此∠APE+∠BPE=∠PAC+∠PBD______,即∠APB=∠PAC+∠PBD(2)当动点P落在第(2)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出∠APB、∠PAC、∠PBD之间满足的关系式,不必说明理由.(3)当动点P在第(3)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.(4)当动点P在第(4)部分时,∠APB、∠PAC、∠PBD之间的关系是怎样的?请直接写出相应的结论.5、已知一角的两边与另一个角的两边分别平行,试探索这两个角之间的关系,并说明你的结论.(1)如图1所示,,则的关系是           (2)如图2所示,,则的关系是           (3)经过上述探索,我们可以得到一个结论(试用文字语言表述):           (4)若两个角的两边分别平行,且一个角比另一个角的倍少,则这两个分别是多少度? -参考答案-一、单选题1、B【解析】【分析】由邻补角,角平分线的定义,余角的性质进行依次判断即可.【详解】解:∵∠AOE=90°,∠DOF=90°,∴∠BOE=90°=∠AOE=∠DOF∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,∴∠EOF=∠BOD,∠AOF=∠DOE∴当∠AOF=50°时,∠DOE=50°;故①正确;OB平分∠DOG∴∠BOD=∠BOG∴∠BOD=∠BOG=∠EOF=∠AOC故④正确;∴∠BOD=180°-150°=30°,故③正确;的平分线,则∠DOE=∠DOG∴∠BOG+∠BOD=90°-∠EOE∴∠EOF=30°,而无法确定∴无法说明②的正确性;故选:B.【点睛】本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.2、D【解析】【分析】根据平行线间的距离的定义解答即可.【详解】解:分两种情况:如果直线a与水平方向垂直,则直线ab之间的距离为4cm,若果直线a与水平方向不垂直, 则直线ab之间的距离小于4cm直线a与直线b之间的距离不大于4cm.故选D.【点睛】本题主要考查了直线的平移和平行线之间的距离, 平行线之间的距离是指从一条平行线上的任意一点到另一条平行线作垂线,垂线段的长度叫两平行线间的距离.另外,掌握分类讨论思想是正确解答本题关键.3、B【解析】【分析】根据平移的性质对各选项进行判断.【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B.【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.4、A【解析】【分析】根据平移只改变图形的位置不改变图形的形状和大小解答.【详解】解:能通过平移得到的是A选项图案.故选:A【点睛】本题考查了利用平移设计图案,熟记平移变换只改变图形的位置不改变图形的形状并准确识图是解题的关键.5、D【解析】【分析】根据垂线段的性质“直线外和直线上所有点的连线中,垂线段最短”作答.【详解】解:垂线段最短,到直线的距离故选:D.【点睛】本题考查了点到直线的距离的定义和垂线段的性质,解题的关键是掌握垂线段最短.6、D【解析】【分析】根据题意画图如图(1),根据平行线性质两直线平行,同位角相等,即可得出∠α=∠1=∠β,即可得出答案,如图(2)根据平行线性质,两直线平行,同旁内角互补,∠α+∠2=180°,再根据两直线平行,内错角相等,∠2=∠β,即可得出答案.【详解】解:如图1,ab∴∠1=∠αcd∴∠β=∠1=∠α=60°;如图(2),ab∴∠α+∠2=180°,cd∴∠2=∠β∴∠β+∠α=180°,∵∠α=60°,∴∠β=120°.综上,∠β=60°或120°.故选:D【点睛】本题主要考查了平行线的性质,熟练掌握相关性质进行计算是解决本题的关键.7、D【解析】【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意; ∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意; (同位角相等,两直线平行)故C不符合题意; ∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定 故D符合题意;故选D【点睛】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.8、B【解析】【分析】设∠4的补角为,利用∠1=∠2求证,进而得到,最后即可求出∠4.【详解】解:设∠4的补角为,如下图所示:∠1=∠2,故选:B.【点睛】本题主要是考查了平行线的性质与判定,熟练角相等,证明两直线平行,然后利用平行关系证明其他角相等,这是解决该题的关键.9、D【解析】【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.10、B【解析】【分析】根据平移的性质,对逐个选项进行分析即可.【详解】解:第一个、第二个图不能由基本图形平移得到,第三个、第四个图可以由基本图形平移得到,故选:B.【点睛】本题主要考查了图形的平移,图形的平移只改变图形的位置,不改变图形的形状,大小,方向.学生比较难区分平移、旋转或翻转.二、填空题1、80°##80度【解析】【分析】根据邻补角的定义,即可解答.【详解】解:∵∠AOD+∠BOD=180°,∴∠BOD =180°-∠AOD=180°-100°=80°,故答案为:80°.【点睛】本题考查了邻补角的定义,如果两个角有一条公共边,其余两边互为反向延长线,那么这两个角互为邻补角,互为邻补角两个角的和等于180°.2、135【解析】【分析】两直线平行,内错角相等,可知,进而得出结果.【详解】解:道路是平行的(两直线平行,内错角相等)故答案为:135.【点睛】此题考查平行线的性质.解题的关键在于实际问题转化为几何问题,利用平行线的性质求解.3、∠2=150°或∠3=30°【解析】4、5【解析】【分析】根据平移的性质解答.【详解】解:将长度为5cm的线段向上平移10cm,所得线段的长度是5cm故答案为:5.【点睛】此题考查了平移的性质:平移前后的图形全等,熟记平移的性质是解题的关键.5、     一次     变化【解析】三、解答题1、 (1)见解析(2)见解析(3)见解析(4)AH(5)AGAHBH,点到直线的距离,垂线段最短【解析】【分析】(1)根据平行线的判定结合网格画AB的平行线CF即可;(2)根据垂线的定义,结合网格过点A画线段BC的垂线段即可;(3)根据垂线的定义,结合网格过点A画线段AB的垂线,交BC于点H即可;(4)点H到直线AB的距离是过点H垂直于AB的垂线段HA的长;(5)根据点到直线的距离,垂线段最短求解即可.(1)解:如图所示,直线CF即为所求;(2)解:如图所示,线段AG即为所求;(3)解:如图所示,线段AH即为所求;(4)解:由题意得线段AH的长度是点H到直线AB的距离;故答案为:AH(5)解:∵AGBHAGAHAHABAHBHAGAHBH,理由是:点到直线的距离,垂线段最短,故答案为:AGAHBH,点到直线的距离,垂线段最短.【点睛】本题主要考查了画平行线,画垂线,点到直线的距离,垂线段最短等等,熟知相关知识是解题的关键.2、 (1)AB=BD,见详解;(2)CEADE,见详解;(3)AF∥BC;见详解;(4)CE【解析】【分析】(1)根据网格的性质,线段中点定义,得出BD=3,延长即可;(2)根据网格的性质,利用点平移方法即可画出CEAD(3)根据网格中小正方形对角线的性质,即可画出AF∥BC(4)根据网格的性质, CEAB,根据点到直线的距离得出CE的长即可得(1)解:根据题意,得AB=3cm,在AB的延长线上,截取BD=3AB=BD,如图所示:(2)解:如图所示:点C向下平移2个单位取点E,连结CE,则CEADE(3)解:如图所示:∵BE=2=CEAB=3,AE=AB+BE=3+2=5,∴点C向上平移3个格到点F,连结AF,则AF∥BCAF是正方形网格的对角线,CB是正方形网格的对角线,∴∠FAB=45°,∠CBE=45°,∵∠FAB=∠CBE=45°,AF∥BC(4)C到直线AB的距离为线段CE的长度.故答案为CE【点睛】此题主要考查正方形网格中的作图综合问题,熟练掌握网格的性质,中点定义,垂线定义,平行线判定与性质,点到直线的距离是解题关键.3、100°【解析】【分析】根据对顶角的性质,可得∠AOC与∠DOB的关系,根据角平分线的性质,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.【详解】解:由对顶角相等得∠AOC=∠BOD=40°,OA平分∠COE∴∠COE=2∠AOC=80°,由邻补角的性质得DOE=180°-∠COE=180°-80°=100°.【点睛】本题考查了对顶角、邻补角,对顶角相等,邻补角互补,熟练掌握对顶角的性质和角平分线的定义是解答本题的关键.4、 (1)平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)∠APB+∠PAC+∠PBD=180°(3)∠PAC=∠APB+∠PBD(4)∠PAC+∠APB=∠PBD【解析】【分析】(1)根据平行公理、平行线的性质、等式的性质分别解答;(2)过点PEFAC,证明EFBD,推出∠BPF+∠PBD=180°,同理∠APF+PAC=180°.由此得到结论∠APB+∠PAC+∠PBD=360°;(3)过点PEFAC,如图4,根据平行线的性质可得出∠PAC=∠APB+∠PBD(4)过点PEFAC,如图5,根据平行线的性质可得出∠PAC+∠APB=∠PBD.(1)解:过点PEFAC,如图2因为ACBD(已知),EFAC(所作),所以EFBD平行于同一直线的两直线平行所以∠BPE=∠PBD两直线平行,内错角相等同理∠APE=∠PAC因此∠APE+∠BPE=∠PAC+∠PBD等式的性质即∠APB=∠PAC+∠PBD故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;等式性质;(2)解:过点PEFAC,如图(3),因为ACBDEFAC所以EFBD所以∠BPF+∠PBD=180°同理∠APF+PAC=180°.因此∠APF+∠BPF+∠PAC+∠PBD=360°,即∠APB+PAC+∠PBD=360°.(3)解:过点PEFAC,如图4,ACBDEFACEFBD∴∠MPF=∠PBD.∠APF+PAC=180°.∵∠APF+∠MPF+∠APB =180°,∴∠PAC=∠APB+∠PBD(4)解:过点PEFAC,如图5,ACBDEFACEFBD∴∠MPF=∠PBD.∠APN=PAC∵∠MPF=∠NPB =∠APB+∠APN∴∠PAC+∠APB=∠PBD.【点睛】本题考查了平行公理,平行线的性质以及数形结合思想的应用,是基础知识比较简单.5、(1);(2);(3)一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补;(4)【解析】【分析】(1)根据两直线平行,同位角相等,可求出∠1=∠2;(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;(3)由(1)(2)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)如图1.故答案为:(2)故答案为:(3)由(1)、(2)得:一角的两边与另一个角的两边分别平行,则这两个角要么相等,要么互补.(4)这两个角分别是,且这两个角分别为 图1                           图2【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用. 

    相关试卷

    初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后测评:

    这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试课后测评,共19页。试卷主要包含了下列说法中不正确的是,如图,下列条件中能判断直线的是,直线,如图,直线a等内容,欢迎下载使用。

    数学七年级下册第七章 相交线与平行线综合与测试当堂达标检测题:

    这是一份数学七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,如图,点A等内容,欢迎下载使用。

    初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试:

    这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试达标测试,共20页。试卷主要包含了有下列说法,生活中常见的探照灯等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map