2021学年第七章 相交线与平行线综合与测试课时作业
展开
这是一份2021学年第七章 相交线与平行线综合与测试课时作业,共22页。
冀教版七年级下册第七章相交线与平行线达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 0分)一、单选题(10小题,每小题0分,共计0分)1、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )A.55° B.125° C.115° D.65°2、如图,下列给定的条件中,不能判定的是( )A. B. C. D.3、下列说法正确的是( )A.同位角相等B.在同一平面内,如果a⊥b,b⊥c,则a⊥cC.相等的角是对顶角D.在同一平面内,如果a∥b,b∥c,则a∥c4、如图,下列条件中,不能判断∥的是( )A.∠1=∠3 B.∠2=∠4 C.∠4+∠5=180° D.∠3=∠45、如图,①,②,③,④可以判定的条件有( ).A.①②④ B.①②③ C.②③④ D.①②③④6、一把直尺与一块直角三角板按下图方式摆放,若,则( )A.52° B.53° C.54° D.63°7、如图,直线AB和CD相交于点O,下列选项中与∠AOC互为邻补角的是( )A.∠BOC B.∠BOD C.∠DOE D.∠AOE8、如图,直线AB与CD相交于点O,若,则等于( )A.40° B.60° C.70° D.80°9、如图,∠1=35°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为 ( )A.125° B.115° C.105° D.95°10、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )A.40° B.36° C.44° D.100°第Ⅱ卷(非选择题 100分)二、填空题(5小题,每小题4分,共计20分)1、平移的性质:①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小______.②新图形中的每一个点,都是由原图形中的某一点移动后得到的,这两个点是对称点,连接各组对应点的线段______且______.2、如图,AD∥BC,AC与BD相交于点O,则图中面积相等的三角形共有___对.3、如图,从A点向已知直线 l 画一条垂直的线段和几条不垂直的线段.连接直线外一点与直线上各点的所有线段中,______最短.简单说成:垂线段最短. 直线外一点到这条直线的垂线段的长度,叫做______.线段______的长度叫做点A到直线l的距离.4、数学课上,老师要求同学们利用三角板画两条平行线.如图,小华的画法;①将含角三角尺的最长边与直线重合,用虚线作出一条最短边所在直线;②再次将含角三角尺的最短边与虚线重合,画出最长边所在直线,则.你认为他画图的依据是__.5、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知∠1=∠2=52°,EFDB.(1)DG与AB平行吗?请说明理由;(2)若EC平分∠FED,求∠C的度数.2、补全下列推理过程:如图,,,,试说明.解:,(已知),(垂直的定义).( ). ( ).(已知), (等量代换).( ).3、如图直线,直线与分别和交于点交直线b于点C.(1)若,直接写出 ;(2)若,则点B到直线的距离是 ;(3)在图中直接画出并求出点A到直线的距离.4、如图,点G在上,已知,平分,平分请说明的理由.解:因为(已知),(邻补角的性质),所以(________________)因为平分,所以(________________).因为平分,所以______________,得(等量代换),所以_________________(________________).5、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;(2)当点E落在直线AC上时,直接写出∠BAD的度数;(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数. -参考答案-一、单选题1、B【解析】【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.2、A【解析】【分析】根据平行线的判定条件:同位角相等,两直线平行,同旁内角互补,两直线平行,内错角相等,两直线平行,进行逐一判断即可.【详解】解:A选项:当∠1=∠A时,可知是DE和AC被AB所截得到的同位角,可得到DE∥AC,而不是AB∥DF,故符合题意;B选项:当∠A=∠3时,可知是AB、DF被AC所截得到的同位角,可得AB∥DF,故不符合题意;C选项:当∠1=∠4时,可知是AB、DF被DE所截得到的内错角,可得AB∥DF,故不符合题意;D选项:当∠2+∠A=180°时,是一对同旁内角,可得AB∥DF;故不符合题意;故选A.【点睛】本题主要考查了平行线的判定,熟知平行线的判定条件是解题的关键.3、D【解析】【分析】根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.【详解】解:A. 同位角不一定相等,故该项不符合题意;B. 在同一平面内,如果a⊥b,b⊥c,则ac,故该项不符合题意;C. 相等的角不一定是对顶角,故该项不符合题意;D. 在同一平面内,如果ab,bc,则ac,故该项符合题意;故选:D.【点睛】此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.4、D【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:、,内错角相等,,故本选项错误,不符合题意;、,同位角相等,,故本选项错误,不符合题意;、,同旁内角互补,,故本选项错误,不符合题意;、,它们不是内错角或同位角,与的关系无法判定,故本选项正确,符合题意.故选:D.【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.5、A【解析】【分析】根据平行线的判定定理逐个排查即可.【详解】解:①由于∠1和∠3是同位角,则①可判定;②由于∠2和∠3是内错角,则②可判定;③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;④①由于∠2和∠5是同旁内角,则④可判定;即①②④可判定.故选A.【点睛】本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.6、B【解析】【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴,,∴,∴,故选B.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.7、A【解析】【详解】解:图中与互为邻补角的是和,故选:A.【点睛】本题考查了邻补角,熟练掌握邻补角的定义(两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角)是解题关键.8、A【解析】【分析】根据对顶角的性质,可得∠1的度数.【详解】解:由对顶角相等,得∠1=∠2,又∠1+∠2=80°,∴∠1=40°.故选:A.【点睛】本题考查的是对顶角,掌握对顶角相等这一性质是解决此题关键.9、A【解析】【分析】利用互余角的概念与邻补角的概念解答即可.【详解】解:∵∠1=35°,∠AOC=90°,∴∠BOC=∠AOC−∠1=55°.∵点B,O,D在同一条直线上,∴∠2=180°−∠BOC=125°.故选:A.【点睛】本题主要考查了角的和差运算,互余角的关系以及邻补角的关系.准确使用邻补角的关系是解题的关键.10、A【解析】【分析】首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.【详解】∵∠1=40°,∠2=40°,∴∠1=∠2,∴PQMN,∴∠4=180°﹣∠3=40°,故选:A.【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.二、填空题1、 完全相同 平行(或共线) 相等【解析】略2、3【解析】【分析】根据平行线的性质可得到两对同底同高的三角形,△AOB与△DOC由△ADC与△DAB减去△ADO得到,故面积相等的三角形有三对.【详解】解:根据平行线的性质知,△ADC与△DAB,△ABC与DCB都是同底等高的三角形,△AOB与△DOC由△ADC与△DAB减去△ADO得到,所以面积相等的三角形有三对,故答案为:3.【点睛】本题考查了平行线间的距离,三角形的面积的公式,熟记平行线间的距离处处相等是解题的关键.3、 垂线段 点到直线的距离 AD【解析】略4、内错角相等,两直线平行【解析】【分析】根据画图的步骤,2个60°的角是内错角,根据平行线的判定即可求得答案【详解】解:画图的依据是内错角,相等两直线平行.故答案为:内错角相等,两直线平行【点睛】本题考查了画平行线,掌握平行线的判定定理是解题的关键.5、50°【解析】【分析】三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.【详解】解:如图故答案为:.【点睛】本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.三、解答题1、 (1)平行,理由见解析(2)65°【解析】【分析】(1)DG与AB平行.由可得∠1=∠D,由∠1=∠2,可得∠2=∠D,结论可求得;(2)由EC平分∠FED,可得∠DEC=∠DEF=65°,再利用得到∠C=∠DEC,结论可求.(1)解: DG与AB平行.理由: ∵, ∴∠1=∠D.∵∠1=∠2,∴∠D=∠2.∴.(2)解:∵EC平分∠FED,∴∠DEC=∠DEF.∵∠1=50°,∴∠DEF=180°﹣∠1=130°.∴∠DEC=∠DEF=65°.∵,∴∠C=∠DEC=65°.【点睛】此题考查了平行线的判定及性质,熟练掌握平行线的判定定理及性质定理并综合应用是解题的关键.2、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行【解析】【分析】根据题意读懂推理过程中每一步的推理依据即可完成解答.【详解】,(已知),(垂直的定义),(同位角相等,两直线平行),(两直线平行,同位角相等),(已知),(等量代换),(内错角相等,两直线平行).故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.3、(1);(2)4;(3)作图见详解;点A到直线BC的距离为.【解析】【分析】(1)根据平行线的性质:两直线平行,同旁内角互补及垂直的性质即可得;(2)根据点到直线的距离可得点B到直线AC的距离为线段,由此即可得出结果;(3)过点A作,点A到直线BC的距离为线段AD的长度,利用三角形等面积法即可得出.【详解】解:(1)∵,∴,∵,,∴,故答案为:;(2)∵,∴点B到直线AC的距离为线段,故答案为:4;(3)如图所示:过点A作,点A到直线BC的距离为线段AD的长度,∵,∴为直角三角形, ∴,即,解得:,∴点A到直线BC的距离为.【点睛】题目主要考查平行线的性质及点到直线的距离,熟练掌握等面积法求距离是解题关键.4、同角的补角相等,角平分线的定义,∠AGC,,内错角相等两直线平行【解析】【分析】根据补角的性质,角平分线的定义,及平行线的判定定理依次分析解答.【详解】解:因为(已知),(邻补角的性质),所以(同角的补角相等)因为平分,所以(角平分线的定义).因为平分,所以∠AGC,得(等量代换),所以(内错角相等两直线平行),故答案为:同角的补角相等,角平分线的定义,∠AGC,,内错角相等两直线平行.【点睛】此题考查了平行线的判定定理,熟记补角的性质,角平分线的定义及平行线的判定定理是解题的关键.5、(1);(2);(3)的值为:或.【解析】【分析】(1)先求解 再利用角的和差关系可得答案;(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.【详解】解:(1) ∠BAD=18°,∠EAD=∠BAD, (2)当落在的下方时,如图, 当落在的上方时,如图, 而 (3)当落在的内部时,如图, ∠CAE:∠BAD=7:4, 当落在的外部时,如图, ∠CAE:∠BAD=7:4,设则 解得: 综上:的值为:或.【点睛】本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
相关试卷
这是一份初中数学第七章 相交线与平行线综合与测试精练,共20页。试卷主要包含了如图,直线a,如图,下列条件中能判断直线的是,下列命题中,是假命题的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第七章 相交线与平行线综合与测试巩固练习,共25页。试卷主要包含了直线m外一点P它到直线的上点A等内容,欢迎下载使用。
这是一份数学七年级下册第七章 相交线与平行线综合与测试当堂达标检测题,共21页。试卷主要包含了如图,下列条件中能判断直线的是,如图,点A等内容,欢迎下载使用。