初中数学冀教版七年级下册第六章 二元一次方程组综合与测试复习练习题
展开冀教版七年级下册第六章二元一次方程组难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 0分)
一、单选题(10小题,每小题0分,共计0分)
1、小明解方程组的解为,由于不小滴下了两滴墨水,刚好把两个数■和★遮住了,则这两个数和■和★的值为( )
A.■=8和★=3 B.■=8和★=5 C.■=5和★=3 D.■=3和★=8
2、有下列方程:①xy=1;②2x=3y;③;④x2+y=3; ⑤;⑥ax2+2x+3y=0 (a=0),其中,二元一次方程有( )
A.1个 B.2个 C.3个 D.4个
3、《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.若设共有人,该物品价值元,则根据题意可列方程组为( )
A. B. C. D.
4、用加减消元法解二元一次方程组时,下列方法中无法消元的是( )
A. B. C. D.
5、已知是方程的解,则k的值为( )
A.﹣2 B.2 C.4 D.﹣4
6、现有一批脐橙运往外地销售,A型车载满一次可运3吨,B型车载满一次可运4吨,现有脐橙31吨,计划同时租用A,B两种车型,一次运完且恰好每辆车都载满脐橙,租车方案共有( )
A.2种 B.3种 C.4种 D.5种
7、《孙子算经》是中国古代最重要的数学著作,其中记载:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺.木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问木长多少尺?”设绳子长x尺,木长y尺,可列方程组为( ).
A. B.
C. D.
8、李老师为学习进步的学生购买奖品,共用去42元购买单价为6元的和单价为12元的两种笔记本(购买本数均为正整数).你认为购买方案共有( )种.A.2 B.3 C.4 D.5
9、学校计划用200元钱购买、两种奖品(两种都要买),种每个15元,种每个25元,在钱全部用完的情况下,有多少种购买方案( )
A.2种 B.3种 C.4种 D.5种
10、将方程x+2y=11变形为用含x的式子表示y,下列变形中正确的是( )
A.y= B.y= C.x=2y﹣11 D.x=11﹣2y
第Ⅱ卷(非选择题 100分)
二、填空题(5小题,每小题4分,共计20分)
1、已知二元一次方程,用含的代数式示,则________.
2、已知是方程2x+ay=7的一个解,那么a=_____.
3、网络时代的到来,让网购成为人们生活中随处可见的操作,快递员也成为一项方便人们生活重要的职业,A,B,C三位快递员在三个不同的快递公司进行派件工作,且每件快递派送费用有一定差别,B快递员的每件快递派送费是A的2倍,且A快递员每件快递派送费为整数.平时每位快递员的每天派送件数基本保持稳定,B快递员每天派送的数量是C的1.5倍,C快递员每天派送的数量为200件,三位快递员平时一天的总收入为800元.由于本周处于双12购物节期间,大量快选带留,三位派送员加班加点进行派送,每件快递派送费不发生变化,每天的派送比平时均有变化,A快递员比平时的1.5倍还多60件,B快递员比平时的2倍多100件,c快递员是平时的3倍,此时每天三位快递员一天总收入增加到1940元则B快递员在双12购物节派送期间每天收入为 _____元.
4、如果与的和是单项式, 则________ .
5、含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做___________.
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买、两种防疫物资,种防疫物资每箱1500元,种防疫物资每箱1200元.若购买种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).
2、解方程组
(1)
(2)
3、某单位用汽车和火车向疫区用输两批防疫物资,具体运输情况如下表所示,求每辆汽车和每节火车车厢平均各装物资多少吨?
| 所用汽车数量(辆) | 所用火车车厢数量(节) | 运输物资总量(吨) |
第一批 | 5 | 2 | 140 |
第二批 | 3 | 4 | 224 |
4、已知方程(k+2)x+(k-6)y=k+8是关于x,y的方程.
(1)k为何值时,方程为一元一次方程?
(2)k为何值时,方程为二元一次方程?
5、解方程组:
-参考答案-
一、单选题
1、A
【解析】
【分析】
把代入求出;再把代入求出数■即可.
【详解】
解:把代入得,,解得,;
把代入得,,解得,;
故选A
【点睛】
本题考查了二元一次方程组的解法,解题关键是明确方程组解的意义,代入方程准确进行计算.
2、C
【解析】
略
3、A
【解析】
【分析】
根据题意可得等量关系:人数×8−3=物品价值;人数×7+4=物品价值,根据等量关系列出方程组即可.
【详解】
解:设有x人,物品价值y元,由题意得:
故选:A.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.
4、D
【解析】
【分析】
利用加减消元法逐项判断即可.
【详解】
A. ,可以消去x,不符合题意;
B. ,可以消去y,不符合题意;
C. ,可以消去x,不符合题意;
D. ,无法消元,符合题意;
故选:D
【点睛】
本题考查了加减消元法,解题关键是明确加减消元的方法,把相同未知数的系数变成相同或互为相反数,然后准确进行判断.
5、C
【解析】
【分析】
把代入是方程kx+2y=﹣2得到关于k的方程求解即可.
【详解】
解:把代入方程得:﹣2k+6=﹣2,
解得:k=4,
故选C.
【点睛】
本题主要考查二元一次方程的解,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.有解必代是解决此类题目的基本思路.
6、B
【解析】
【分析】
设租A型车x辆,租B型车y辆,根据题意列方程得,正整数解即可.
【详解】
解:设租A型车x辆,租B型车y辆,
根据题意列方程得,
∴,
∵均为正整数,
∴是4的倍数,小于31的4的倍数有28,24,20,16,12,8,4,
∴=28,解得x=1,,
∴=24,解得,,
∴=20,解得,
∴=16,解得x=5,,
∴=12,解得,
∴=8,解得,
∴=4,解得x=9,,
∴租车方案有三种分别为:租A型车1辆,租B型车7辆或租A型车5辆,租B型车4辆或租A型车9辆,租B型车1辆.
故选择B.
【点睛】
本题考查二元一次方程的正整数解,掌握应用二元一次方程解应用题,利用二元一次方程的正整数解解决方案设计问题是解题关键.
7、B
【解析】
【分析】
设绳子长x尺,长木长y尺,根据“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺”,可得出关于x,y的二元一次方程组.
【详解】
解:设绳子长x尺,长木长y尺,
依题意,得:,
故选:B.
【点睛】
本题考查了二元一次方程组的应用以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.
8、B
【解析】
【分析】
设购买笔记本本,购买笔记本本,先建立二元一次方程,再根据均为正整数进行分析即可得.
【详解】
解:设购买笔记本本,购买笔记本本,
由题意得:,即,
因为均为正整数,
所以有以下三种购买方案:
①当,时,,
②当,时,,
③当,时,,
故选:B.
【点睛】
本题考查了二元一次方程的应用,正确建立方程是解题关键.
9、A
【解析】
【分析】
设购买了A种奖品x个,B种奖品y个,根据学校计划用200元钱购买A、B两种奖品,其中A种每个15元,B种每个25元,钱全部用完可列出方程,再根据x,y为非负整数求出解即可得.
【详解】
解:设购买了A种奖品x个,B种奖品y个,
根据题意得:,
化简整理得:,得,
∵x,y为非负整数,
∴,,,
∴购买方案为:
方案1:购买了A种奖品0个,B种奖品8个;
方案2:购买了A种奖品5个,B种奖品5个;
方案3:购买了A种奖品10个,B种奖品2个;
∵两种奖品都要买,
∴方案1不符合题意,舍去,
综上可得:有两种购买方案.
故选:A.
【点睛】
本题考查了二元一次方程的应用,根据题意列出二元一次方程,然后根据解为非负整数确定未知数的值是解题关键.
10、B
【解析】
【详解】
解:,
,
.
故选:B.
【点睛】
本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型.
二、填空题
1、
【解析】
【分析】
把看做已知数表示出即可.
【详解】
解:
方程,
解得:,
∴.
故答案为:.
【点睛】
本题考查了解二元一次方程,解题的关键是将看做已知数表示出.
2、-1
【解析】
【分析】
根据方程的解的概念将方程的解代入原方程,然后计算求解.
【详解】
解:由题意可得:2×3﹣a=7,
解得:a=﹣1,
故答案为:﹣1.
【点睛】
本题考查二元一次方程的解和解一元一次方程,理解方程的解的概念是解题关键.
3、1400
【解析】
【分析】
设A每件快递派送费为x元,A每天派送件数为y件,C每件快递派送费为z元,根据题意列出x、y、z的方程,进而解方程即可求解.
【详解】
解:设A每件快递派送费为x元,B每件快递派送费为2x元,C每件快递派送费为y元,A平时每天派送件数为z件,根据题意,B平时每天派送件数为300件,双12购物节期间,A每天派送件数为(1.5z+60)件,B每天派送件数为700件,
根据题意,,即:,
∵x为整数,
∴由得x=1,
则有:,
解得:,
∴B每件快递派送费为2元,则B快递员在双12购物节派送期间每天收入为2×700=1400元,
故答案为:1400.
【点睛】
本题考查三元一次方程组的应用、解二元一次方程组,理解题意,找准等量关系,正确列出方程组,得出x=1是解答的关键.
4、5
【解析】
【分析】
两个单项式,所含的字母相同,相同字母的指数也相同,则称这两个单项式是同类项,据此转化为解二元一次方程组,解得,再将其代入多项式中计算即可.
【详解】
解:∵与的和是单项式,
∴与是同类项,
∴,
解得:.
∴.
故答案为:5.
【点睛】
本题考查同类项的定义,合并同类项,涉及简单二元一次方程组解法,代数式求值,是基础考点,难度较易,掌握相关知识是解题关键.
5、三元一次方程组
【解析】
略
三、解答题
1、 (1)甲公司150人,乙公司180人
(2)共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱
【解析】
【分析】
(1)设甲公司人,乙公司人,根据题意列出二元一次方程组,求解即可;
(2)设种物资购买箱,种物资购买箱,根据题意列出二元一次方程,求出整数解即可.
(1)
解:设甲公司人,乙公司人,
根据题意得:,
解得:,
答:甲公司150人,乙公司180人;
(2)
设种物资购买箱,种物资购买箱,
由题意得:,
整理得:,
,且、是正整数,
当时,;
当时,;
答:共有两种方案,①种物资购买8箱,种物资购买20箱;②种物资购买4箱,种物资购买25箱.
【点睛】
本题考查了二元一次方程组的应用,解题关键是理清题意,正确找到等量关系,列出二元一次方程组.
2、 (1)
(2)
【解析】
【分析】
(1)利用加减消元法解方程组即可;
(2)利用代入消元法解方程组即可.
(1)
解:
把①代入②得:,即,解得,
把代入到①中得:,
∴方程组的解为:;
(2)
解: ,
用①×2-②得:,解得,
把代入到①中得:,解得
∴方程组的解为:.
【点睛】
本题主要考查了解二元一次方程组,解题的关键在于能够熟知解二元一次方程组的方法.
3、每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨
【解析】
【分析】
设每辆汽车平均装物资x吨,每节火车车厢平均装物资y吨,列方程得,计算即可.
【详解】
解:设每辆汽车平均装物资x吨,每节火车车厢平均装物资y吨
根据题意得:,
解得: .
答:每辆汽车平均装物资8吨,每节火车车厢平均装物资50吨.
【点睛】
此题考查了二元一次方程组的实际应用,正确理解题意是解题的关键.
4、 (1)k=-2或k=6;
(2)k≠-2且k≠6时
【解析】
【分析】
(1)根据一元次方程的定义,含有一个未知数,并且含未知数的项的次数为1的整式方程可得或 ,解方程组得;
(2)根据方程是二元一次方程方程的定义含有两个未知数,含未知数的项的次数为1的整式方程可得,解不等式组即可.
【小题1】
解:∵方程是一元一次方程,
∴或
∴解得k=-2或k=6.
∴当k=-2或k=6时,该方程是一元一次方程.
【小题2】
解:∵方程是二元一次方程,
∴
∴解得k≠-2且k≠6.
∴当k≠-2且k≠6时,该方程是二元一次方程.
【点睛】
本题考查一元一次方程的定义,二元一次方程方程的定义,掌握一元一次方程的定义,二元一次方程方程的定义是解题关键.
5、
【解析】
【分析】
原方程组化简后用代入消元法求解.
【详解】
解:原方程组化简,得
,
②×5+①,得
7x=-7,
∴x=-1,
把x=-1代入②,得
-1+y=2,
∴y=3,
∴.
【点睛】
本题考查了二元一次方程组的解法,其基本思路是消元,消元的方法有:加减消元法和代入消元法两种,灵活选择合适的方法是解答本题的关键.
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时练习: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试课时练习,共18页。试卷主要包含了若关于x,二元一次方程的解可以是等内容,欢迎下载使用。
2021学年第六章 二元一次方程组综合与测试同步练习题: 这是一份2021学年第六章 二元一次方程组综合与测试同步练习题,共20页。试卷主要包含了学校计划用200元钱购买等内容,欢迎下载使用。
初中数学冀教版七年级下册第六章 二元一次方程组综合与测试达标测试: 这是一份初中数学冀教版七年级下册第六章 二元一次方程组综合与测试达标测试,共19页。试卷主要包含了在一次爱心捐助活动中,八年级,《九章算术》中记载等内容,欢迎下载使用。