终身会员
搜索
    上传资料 赚现金

    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试卷(无超纲带解析)

    立即下载
    加入资料篮
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试卷(无超纲带解析)第1页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试卷(无超纲带解析)第2页
    2021-2022学年度强化训练沪科版九年级数学下册第24章圆课时练习试卷(无超纲带解析)第3页
    还剩38页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试课后测评

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共41页。


    沪科版九年级数学下册第24章圆课时练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为( )

    A.25° B.80° C.130° D.100°
    2、如图,,,,都是上的点,,垂足为,若,则的度数为( )

    A. B. C. D.
    3、在圆内接四边形ABCD中,∠A、∠B、∠C的度数之比为2:4:7,则∠B的度数为( )
    A.140° B.100° C.80° D.40°
    4、下面的图形中既是轴对称图形又是中心对称图形的是( )
    A. B. C. D.
    5、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).

    A.20° B.25° C.30° D.40°
    6、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为( )

    A.70° B.50° C.20° D.40°
    7、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G, H三点刚好在金属框上,则该金属框的半径是( )

    A. B. C. D.
    8、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是(  )

    A.1cm B.2cm C.2cm D.4cm
    9、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )

    A.30° B.60°
    C.90° D.120°
    10、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为( )

    A.4 B.6 C.8 D.10
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知O、I分别是△ABC的外心和内心,∠BIC=125°,则∠BOC的大小是 ___度.
    2、如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若,则AC+BC=_____.

    3、如图,一次函数的图象与x轴交于点A,与y轴交于点B,作的外接圆,则图中阴影部分的面积为______.(结果保留π)

    4、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为______.

    5、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,是⊙的直径,弦,垂足为E,弦与弦相交于点G,且,过点C作的垂线交的延长线于点H.

    (1)判断与⊙的位置关系并说明理由;
    (2)若,求弧的长.
    2、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
    (1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
    (2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.

    3、新定义:在平面直角坐标系xOy中,若几何图形G与⊙A有公共点,则称几何图形G为⊙A的关联图形,特别地,若⊙A的关联图形G为直线,则称该直线为⊙A的关联直线.如图1,∠M为⊙A的关联图形,直线l为⊙A的关联直线.

    (1)已知⊙O是以原点为圆心,2为半径的圆,下列图形:
    ①直线y=2x+2;②直线y=﹣x+3;③双曲线y=,是⊙O的关联图形的是  (请直接写出正确的序号).

    (2)如图2,⊙T的圆心为T(1,0),半径为1,直线l:y=﹣x+b与x轴交于点N,若直线l是⊙T的关联直线,求点N的横坐标的取值范围.
    (3)如图3,已知点B(0,2),C(2,0),D(0,﹣2),⊙I经过点C,⊙I的关联直线HB经过点B,与⊙I的一个交点为P;⊙I的关联直线HD经过点D,与⊙I的一个交点为Q;直线HB,HD交于点H,若线段PQ在直线x=6上且恰为⊙I的直径,请直接写出点H横坐标h的取值范围.
    4、如图1,图2,图3的网格均由边长为1的小正方形组成,图1是三国时期吴国的数学家赵爽所绘制的“弦图”,它由四个形状、大小完全相同的直角三角形组成,赵爽利用这个“弦图”对勾股定理作出了证明,是中国古代数学的一项重要成就,请根据下列要求解答问题.

    (1)图1中的“弦图”的四个直角三角形组成的图形是   对称图形(填“轴”或“中心”).
    (2)请将“弦图”中的四个直角三角形通过你所学过的图形变换,在图2,3的方格纸中设计另外两个不同的图案,画图要求:
    ①每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠,不必涂阴影;
    ②图2中所设计的图案(不含方格纸)必须是轴对称图形而不是中心对称图形;图3中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.
    5、已知:如图,正方形的边长为1,在射线AB上取一点E,联结DE,将ADE绕点D针旋转90°,E点落在点F处,联结EF,与对角线BD所在的直线交于点M,与射线DC交于点N.求证:

    (1)当时,求的值;
    (2)当点E在线段AB上,如果,,求y关于x的函数解析式,并写出定义域;
    (3)联结AM,直线AM与直线BC交于点G,当时,求AE的值.

    -参考答案-
    一、单选题
    1、D
    【分析】
    根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.
    【详解】
    解:∵四边形ABCD内接于⊙O,
    ∴∠B+∠ADC=180°,
    ∵∠ADC=130°,
    ∴∠B=50°,
    由圆周角定理得,∠AOC=2∠B=100°,
    故选:D.
    【点睛】
    本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.
    2、B
    【分析】
    连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.
    【详解】
    解:如下图所示,连接OC.

    ∵,
    ∴,.
    ∴.
    ∵.
    ∴.

    ∵和分别是所对的圆周角和圆心角,
    ∴.
    故选:B.
    【点睛】
    本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.
    3、C
    【分析】
    ,,,进而求解的值.
    【详解】
    解:由题意知





    故选C.
    【点睛】
    本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.
    4、A
    【详解】
    解:A、既是轴对称图形又是中心对称图形,此项符合题意;
    B、是中心对称图形,不是轴对称图形,此项不符题意;
    C、是轴对称图形,不是中心对称图形,此项不符题意;
    D、是轴对称图形,不是中心对称图形,此项不符题意;
    故选:A.
    【点睛】
    本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
    5、B
    【分析】
    连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
    【详解】
    解:连接OA,如图,

    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∵∠P=40°,
    ∴∠AOP=50°,
    ∵OA=OB,
    ∴∠B=∠OAB,
    ∵∠AOP=∠B+∠OAB,
    ∴∠B=∠AOP=×50°=25°.
    故选:B.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
    6、D
    【分析】
    首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.
    【详解】
    解:连接OA,OB,

    ∵PA,PB为⊙O的切线,
    ∴∠OAP=∠OBP=90°,
    ∵∠ACB=70°,
    ∴∠AOB=2∠P=140°,
    ∴∠P=360°-∠OAP-∠OBP-∠AOB=40°.
    故选:D.
    【点睛】
    此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.
    7、A
    【分析】
    如图,记过A,G, H三点的圆为则是,的垂直平分线的交点, 记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:再设利用勾股定理建立方程,再解方程即可得到答案.
    【详解】
    解:如图,记过A,G, H三点的圆为则是,的垂直平分线的交点,
    记的交点为 的交点为 延长交于为的垂直平分线,结合正方形的性质可得:

    四边形为正方形,则

    设 而AB=2,CD=3,EF=5,结合正方形的性质可得:




    又 而


    解得:

    故选A
    【点睛】
    本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A,G, H三点的圆的圆心是解本题的关键.
    8、D
    【分析】
    根据圆内接正六边形的性质可得△AOB是正三角形,由面积公式可求出半径.
    【详解】
    解:如图,由圆内接正六边形的性质可得△AOB是正三角形,过作于

    设半径为r,即OA=OB=AB=r,
    OM=OA•sin∠OAB=,
    ∵圆O的内接正六边形的面积为(cm2),
    ∴△AOB的面积为(cm2),
    即,

    解得r=4,
    故选:D.
    【点睛】
    本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键.
    9、B
    【分析】
    由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360°进行分析即可得出答案.
    【详解】
    解:因为每次旋转相同角度,旋转了六次,
    且旋转了六次刚好旋转了一周为360°,
    所以每次旋转相同角度 .
    故选:B.
    【点睛】
    本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数.
    10、A
    【分析】
    根据直径所对的圆角为直角,可得 ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.
    【详解】
    解:∵AB是⊙O的直径,
    ∴ ,
    ∵∠BAC=30°,BC=2,
    ∴.
    故选:A
    【点睛】
    本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
    二、填空题
    1、140
    【分析】
    作的外接圆,根据三角形内心的性质可得:,,再由三角形内角和定理得出:,最后根据三角形外心的性质及圆周角定理即可得.
    【详解】
    解:如图所示,作的外接圆,

    ∵点I是的内心,
    ∴BI,CI分别平分和,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵点O是的外心,
    ∴,
    故答案为:140.
    【点睛】
    题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.
    2、##
    【分析】
    连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.
    【详解】
    解:如图,连接,延长交于点,连接,
    都是的直径,



    在中,,

    平分,且,




    如图,作,交于点,

    在中,,

    设,则,


    解得或(不符题意,舍去),
    则,
    故答案为:.

    【点睛】
    本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.
    3、
    【分析】
    先求出A、B、C坐标,再证明三角形BOC是等边三角形,最后根据扇形面积公式计算即可.
    【详解】
    过C作CD⊥OA于D

    ∵一次函数的图象与x轴交于点A,与y轴交于点B,
    ∴当时,,B点坐标为(0,1)
    当时,,A点坐标为

    ∵作的外接圆,
    ∴线段AB中点C的坐标为,
    ∴三角形BOC是等边三角形

    ∵C的坐标为


    故答案为:
    【点睛】
    本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.
    4、1+
    【分析】
    过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理,
    得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可.
    【详解】
    解:过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,
    ∵点A(3,0)
    ∴AD=x-3,
    ∵为等腰直角三角形,
    ∴AB=AC,∠BAC=90°,
    ∴∠BAE+∠CAD=180°-∠BAC=180°-90°=90°,
    ∵CD⊥x轴, BE⊥x轴,
    ∴∠BEA=∠ADC=90°,
    ∴∠ACD+∠CAD=90°,
    ∴∠ACD=∠BAE,
    在△BAE和△ACD中,

    ∴△BAE≌△ACD(AAS),
    ∴BE=AD=x-3,EA=DC,
    在Rt△EBO中,OB=1,BE= x-3,
    根据勾股定理,
    ∴EA=OE+OA=,
    ∴CD=AE=,
    ∴CO=,
    当OD=CD时OC最大,OC=,此时,
    ∴,
    ∴,
    ∴,
    ∴,(舍去),
    ∴线段OC长度的最大值为.

    故答案为:1+.
    【点睛】
    本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.
    5、12
    【分析】
    如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.
    【详解】
    解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,

    ∴当MN的值最小时,△PEF的值最小,
    ∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,
    ∴∠MAN=120°,
    ∴MN=AM=PA,
    ∴当PA的值最小时,MN的值最小,
    取AB的中点J,连接CJ.
    ∵AB=8,AC=4,
    ∴AJ=JB=AC=4,
    ∵∠JAC=60°,
    ∴△JAC是等边三角形,
    ∴JC=JA=JB,
    ∴∠ACB=90°,
    ∴BC=,
    ∵∠BOC=60°,OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=4,∠BCO=60°,
    ∴∠ACH=30°,
    ∵AH⊥OH,
    AH=AC=2,CH=AH=2,
    ∴OH=6,
    ∴OA==4,
    ∵当点P在直线OA上时,PA的值最小,最小值为-,
    ∴MN的最小值为•(-)=-12.
    故答案:-12.
    【点睛】
    本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.
    三、解答题
    1、
    (1)相切,见解析
    (2)
    【分析】
    (1)连接OC、OD、AC,OC交AF于点M,根据AG=CG,CD⊥AB,可得,从而OC⊥AF,再由∠AFB=90°,可得CH∥AF,即可求证;
    (2)先证明四边形CMFH为矩形,可得OC⊥AF,CM=HF=2,从而得到AM=FM,进而得到OM=BF=2,可得到CM=OM,进而得到 OC=4,AM垂直平分OC,可证得△AOC为等边三角形,即可求解.
    (1)
    解: CH与⊙O相切.
    理由如下:如图,连接OC、OD、AC,OC交AF于点M,

    ∵AG=CG,
    ∴∠ACG=∠CAG,
    ∴,
    ∵CD⊥AB,
    ∴,
    ∴,
    ∴OC⊥AF,
    ∵AB为直径,
    ∴∠AFB=90°,
    ∵BH⊥CH,
    ∴CH∥AF,
    ∴OC⊥CH,
    ∵OC为半径,
    ∴CH为⊙O的切线;
    (2)
    解:由(1)得:BH⊥CH,OC⊥CH,
    ∴OC∥BH,
    ∵CH∥AF,
    ∴四边形CMFH为平行四边形,
    ∵OC⊥CH,
    ∴∠OCH=90°,
    ∴四边形CMFH为矩形,
    ∴OC⊥AF,CM=HF=2,
    ∴AM=FM,
    ∵点O为AB的中点,
    ∴OM=BF=2,
    ∴CM=OM,
    ∴OC=4,AM垂直平分OC,
    ∴AC=AO,
    而AO=OC,
    ∴AC=OC=OA,,
    ∴△AOC为等边三角形,
    ∴∠AOC=60°,
    ∵,
    ∴∠AOD=∠AOC=60°,
    ∴∠COD=120°,
    ∴弧CD的长度为.
    【点睛】
    本题主要考查了圆的基本性质,垂径定理,切线的判定,等边三角形的判定和性质,熟练掌握相关知识点是解题的关键.
    2、(1)作图见解析;(2)
    【分析】
    (1)由于D点为⊙O的切点,即可得到OC=OD,且OD⊥AB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;
    (2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.
    【详解】
    解:(1)如图所示,先作∠A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;

    (2)如图所示,连接CD和OD,
    由题意,AD为⊙O的切线,
    ∵OC⊥AC,且OC为半径,
    ∴AC为⊙O的切线,
    ∴AC=AD,
    ∴∠ACD=∠ADC,
    ∵CD=BD,
    ∴∠B=∠DCB,
    ∵∠ADC=∠B+∠BCD,
    ∴∠ACD=∠ADC=2∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    即:3∠DCB=90°,
    ∴∠DCB=30°,
    ∵OC=OD,
    ∴∠DCB=∠ODC=30°,
    ∴∠COD=180°-2×30°=120°,
    ∵∠DCB=∠B=30°,
    ∴在Rt△ABC中,∠BAC=60°,
    ∵AO平分∠BAC,
    ∴∠CAO=∠DAO=30°,
    ∴在Rt△ACO中,,
    ∴.

    【点睛】
    本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.
    3、(1)①③;(2)点N的横坐标;(3)或.
    【分析】
    (1)在坐标系中作出圆及三个函数图象,即可得;
    (2)根据题意可得直线l的临界状态是与圆T相切的两条直线和,当临界状态为时;当临界状态为时,根据勾股定理及直角三角形的性质即可得;
    (3)根据题意,只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,分三种情况讨论:①当点Q在点P的上方时,连接BP、DQ,交于点H;②当点P在点Q的上方时,直线BP、DQ,交于点H,求出直线HB、直线HD的解析式,然后利用两点之间的距离解方程求解;③当时,两条直线与圆无公共点;综合三种情况即可得.
    【详解】
    解:(1)在坐标系中作出圆及三个函数图象,可得①③函数解析式与圆有公共点,

    故答案为:①③;
    (2)如图所示:

    ∵直线l是的关联直线,
    ∴直线l的临界状态是与相切的两条直线和,
    当临界状态为时,连接TM,
    ∴,,
    ∵当时,,
    当时,,
    ∴,
    ∴为等腰直角三角形,
    ∴,

    ∴点,
    同理可得当临界状态为时,
    点,
    ∴点N的横坐标;
    (3)①如图所示:只考虑横坐标的取值范围,所以将的圆心I平移到x轴上,当点Q在点P的上方时,连接BP、DQ,交于点H;

    设点,直线HB的解析式为,直线HD的解析式为,
    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最大值为,
    ②如图所示:当点P在点Q的上方时,直线BP、DQ,交于点H,当圆心I在x轴上时,
    设点,直线HB的解析式为,直线HD的解析式为,

    当时,与互为相反数,可得

    得,
    由图可得:,则,
    ∴,
    结合,
    解得:,,
    ∴,
    当时,,
    ∴,h的最小值为,
    ③当时,两条直线与圆无公共点,不符合题意,
    ∴,
    综上可得:或.
    【点睛】
    题目主要考查直线与圆的位置关系,等腰三角形的性质,勾股定理解三角形等,理解题意,作出相应图形是解题关键.
    4、
    (1)中心
    (2)见解析
    【分析】
    (1)利用中心对称图形的意义得到答案即可;
    (2)①每个直角三角形的顶点均在方格纸的格点上,且四个三角形不重叠,是轴对称图形;
    ②所设计的图案(不含方格纸)必须是中心对称图形或轴对称图形.
    (1)
    图1中的“弦图”的四个直角三角形组成的图形是中心对称图形,
    故答案为:中心;
    (2)
    如图2是轴对称图形而不是中心对称图形;

    图3既是轴对称图形,又是中心对称图形.
    【点睛】
    本题考查利用旋转或轴对称设计方案,关键是理解旋转和轴对称的概念,按要求作图即可.
    5、
    (1);
    (2),0≤x≤1;
    (3)AE的值为或.
    【分析】
    (1)过点E作EH⊥BD与H,根据正方形的边长为1,,求出EB=1-,根据正方形性质可求∠ABD=45°,根据EH⊥BD,得出∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,求出EH=BH=BEsin45=,以及 DH=DB-BH=,利用三角函数定义求解即可;
    (2)解:根据AE=x,求出BE=1-x,根据旋转将△ADE绕点D针旋转90°,得到△DCF,CF=AE=x,根据勾股定理ED=FD=,EF=,可证△DEF为等腰直角三角形,先证△BEM∽△FDM,得出,再证△EMD∽△BMF,得出,两式相乘得出,整理即可;
    (3)当点G在BC上,,先证△BGM∽△DAM,得出,由(2)知△BEM∽△FDM,得出,得出,结合,消去y, 当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,证明△BGM∽△DAM,得出,根据∠LBM=∠CBD=45°,ML⊥BC,证出△MLB为等腰直角三角形,再证△MLB∽△DCB,,CD=1,ML=,ML∥BE,结合△LMF∽△BEF,得出即解方程即可.
    (1)
    解:过点E作EH⊥BD与H,
    ∵正方形的边长为1,,
    ∴EB=1-,
    ∵BD为正方形对角线,
    ∴BD平分∠ABC,
    ∴∠ABD=45°,
    ∵EH⊥BD,
    ∴∠BEH=180°-∠EBH-∠EHB=180°-45°-90°=45°,
    ∴EH=BH,
    ∴EH=BH=BEsin45=,AB=BDcos45°,
    ∴,
    ∴DH=DB-BH=,

    (2)
    解:如上图,∵AE=x,
    ∴BE=1-x,
    ∵将△ADE绕点D针旋转90°,得到△DCF,
    ∴CF=AE=x,ED=FD=,
    ∴BF=BC+CF=1+x,
    在Rt△EBF中EF=,
    ∵∠EDF=90°,ED=FD,
    ∴△DEF为等腰直角三角形,
    ∴∠DFE=∠DEF=45°,
    ∴∠EBM=∠MFD=45°,
    ∵∠EMB=∠DMF,
    ∴△BEM∽△FDM,
    ∴,即,
    ∵∠DEM=∠FBM=45°,∠EMD=∠BMF,
    ∴△EMD∽△BMF,
    ∴,即,
    ∴,
    ∴,
    ∴即,
    ∴,0≤x≤1;
    (3)
    解:当点G在BC上,,
    ∵四边形ABCD为正方形,
    ∴AD∥BG,
    ∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∵由(2)知△BEM∽△FDM,
    ∴,
    ∵DB=,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴即,
    解,舍去;

    当点G在CB延长线上,,过M作ML⊥BC,交直线BC于L,
    ∵GB∥AD,
    ∴∴∠DAM=∠BGM,∠ADM=∠GBM,
    ∴△BGM∽△DAM,
    ∴,
    ∴,
    ∴,
    ∵∠LBM=∠CBD=45°,ML⊥BC,
    ∴△MLB为等腰直角三角形,
    ∵ML∥CD,
    ∴∠LMB=∠CDB,∠L=∠DCB,
    ∴△MLB∽△DCB,
    ∴,CD=1,
    ∴ML=
    ∵ML∥BE,
    ∴∠L=∠FBE,∠LMF=∠BEF,
    ∴△LMF∽△BEF,
    ∴,
    ∵BE=AE-AB=x-1,LF=LB+BC+CF=,BF=BC+CF=1+x,
    ∴,
    整理得:,
    解得,舍去,

    ∴AE的值为或.
    【点睛】
    本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.

    相关试卷

    沪科版九年级下册第24章 圆综合与测试同步测试题:

    这是一份沪科版九年级下册第24章 圆综合与测试同步测试题,共31页。

    数学沪科版第24章 圆综合与测试综合训练题:

    这是一份数学沪科版第24章 圆综合与测试综合训练题,共28页。试卷主要包含了下列判断正确的个数有,将一把直尺等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试课时作业:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试课时作业,共27页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map