![2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解重点解析试题(含详细解析)第1页](http://www.enxinlong.com/img-preview/2/3/12719075/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解重点解析试题(含详细解析)第2页](http://www.enxinlong.com/img-preview/2/3/12719075/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度强化训练冀教版七年级数学下册第十一章 因式分解重点解析试题(含详细解析)第3页](http://www.enxinlong.com/img-preview/2/3/12719075/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题
展开这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步达标检测题,共18页。试卷主要包含了下列运算错误的是,如图,长与宽分别为a等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知x,y满足,则的值为( )
A.—5 B.4 C.5 D.25
2、把多项式因式分解得,则常数,的值分别为( )
A., B.,
C., D.,
3、已知x2+x﹣6=(x+a)(x+b),则( )
A.ab=6 B.ab=﹣6 C.a+b=6 D.a+b=﹣6
4、已知m=1﹣n,则m3+m2n+2mn+n2的值为( )
A.﹣2 B.﹣1 C.1 D.2
5、下列各式中从左到右的变形,是因式分解的是( )
A. B.
C. D.
6、下列各式从左到右的变形属于因式分解的是( )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
7、下列运算错误的是( )
A. B. C. D.(a≠0)
8、下列各式从左到右的变形中,是因式分解且完全正确的是( )
A.(x+2)(x﹣2)=x2﹣4 B.x2﹣2x﹣3=x(x﹣2)﹣3
C.x2﹣4x+4=(x﹣2)2 D.x3﹣x=x(x2﹣1)
9、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
A.2560 B.490 C.70 D.49
10、判断下列不能运用平方差公式因式分解的是( )
A.﹣m2+4 B.﹣x2–y2
C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:____.
2、当x=4,a+b=-3时,代数式:ax+bx的值为________.
3、计算下列各题:
(1)______; (2)______;
(3)______; (4)______.
4、分解因式:______.
5、在实数范围内分解因式:x2﹣3xy﹣y2=___.
三、解答题(5小题,每小题10分,共计50分)
1、观察下列因式分解的过程:
①
②
③
……
根据上述因式分解的方法,尝试将下列各式进行因式分解:
(1);
(2).
2、下面是某同学对多项式进行因式分解的过程.
解:设
原式(第一步)
第二步)
(第三步)
(第四步)
(1)该同学第二步到第三步运用了因式分解的______.
A.提取公因式 B.两数和乘以两数差公式
C.两数和的完全平方公式 D. 两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?_____(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.
(3)请你模仿以上方法尝试对多项式进行因式分解.
3、已知,求的值.
4、分解因式:
(1);
(2);
(3)计算:;
(4).
5、分解因式:
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据题意利用平方差公式将变形,进而整体代入条件即可求得答案.
【详解】
解:.
故选:A.
【点睛】
本题考查代数式求值,熟练掌握平方差公式的运用以及结合整体思维分析是解题的关键.
2、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
3、B
【解析】
【分析】
先利用十字相乘法去掉括号,再根据等式的性质得a+b=1,ab=﹣6.
【详解】
解:∵x2+x﹣6=(x+a)(x+b),
∴x2+x﹣6=x2+(a+b)x+ab,
∴a+b=1,ab=﹣6;
故选:B.
【点睛】
本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键.
4、C
【解析】
【分析】
先化简代数式,再代入求值即可;
【详解】
∵m=1﹣n,
∴m+n=1,
∴m3+m2n+2mn+n2
=m2(m+n)+2mn+n2
=m2+2mn+n2
=(m+n)2
=12
=1,
故选:C.
【点睛】
本题主要考查了代数式求值,准确计算是解题的关键.
5、B
【解析】
【分析】
因式分解的结果是几个整式的积的形式.
【详解】
解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;
B.从左到右的变形是因式分解,故本选项符合题意;
C. ,故本选项不符合题意;
D.,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
6、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.
7、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
8、C
【解析】
【分析】
根据因式分解的定义逐项分析即可.
【详解】
A.(x+2)(x﹣2)=x2﹣4是乘法运算,故不符合题意;
B.x2﹣2x﹣3=x(x﹣2)﹣3的右边不是积的形式,故不符合题意;
C.x2﹣4x+4=(x﹣2)2是因式分解,符合题意;
D.x3﹣x=x(x2﹣1)=x(x+1)(x-1),原式分解不彻底,故不符合题意;
故选C.
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
9、B
【解析】
【分析】
利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.
【详解】
解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
【点睛】
本题主要考查了因式分解和代数式求值,准确计算是解题的关键.
10、B
【解析】
【分析】
根据平方差公式:进行逐一求解判断即可.
【详解】
解:A、,能用平方差公式分解因式,不符合题意;
B、,不能用平方差公式分解因式,符合题意;
C、,能用平方差公式分解因式,不符合题意;
D、能用平方差公式分解因式,不符合题意;
故选B.
【点睛】
本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.
二、填空题
1、
【解析】
【分析】
先提出公因式,再利用十字相乘法因式分解,即可求解.
【详解】
解:.
故答案为:
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并根据多项式的特征灵活选合适方法解答是解题的关键.
2、-12
【解析】
【分析】
本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.
【详解】
解:∵x=4,a+b=-3
∴ax+bx
故答案为:-12
【点睛】
本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.
3、
【解析】
【分析】
(1)根据同底数幂相乘运算法则计算即可;
(2)根据积的乘方的运算法则计算即可;
(3)根据幂的乘方的运算法则计算即可;
(3)根据提取公因式法因式分解即可.
【详解】
解:(1);
(2);
(3);
(4).
故答案是:(1);(2);(3);(4).
【点睛】
本题主要考查了同底数幂相乘、幂的乘方、积的乘方以及运用提取公因式法分解因式等知识点,灵活运用相关运算法则成为解答本题的关键.
4、
【解析】
【分析】
用提公因式法即可分解因式.
【详解】
.
故答案为:.
【点睛】
本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.
5、
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;
(2)根据题中的方法分解因式即可.
【详解】
解:(1);
(2).
【点睛】
本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解.
2、 (1)C
(2)不彻底 ,
(3)
【解析】
【分析】
(1)先根据多项式乘以多项式计算,再用完全平方公式因式分解计算即可
(2)利用完全平方公式因式分解即可
(3)模仿给出的步骤,进行因式分解即可
(1)
∵,
∴运用了两数和的完全平方公式.
故选C.
(2)
∵,
∴因式分解不彻底.
故答案为:不彻底,.
(3)
,
解:设,
则原式
.
【点睛】
本题考查因式分解、完全平方公式、多项式乘以多项式以及幂的乘方.理解题意,利用换元法是解题的关键.
3、10
【解析】
【分析】
把a3b+ab3分解为ab[(a+b)2-2ab],然后把a+b=-3,ab=2代入计算即可得出答案.
【详解】
解:∵a+b=-3,ab=2,
∴a3b+ab3
=ab(a2+b2)
=ab[(a+b)2-2ab]
=2×[(-3)2-2×2]
=2×(9-4)
=10.
【点睛】
本题考查了分解因式的应用,会把a3b+ab3分解为ab[(a+b)2-2ab]是解决问题的关键.
4、(1);(2);(3)85;(4).
【解析】
【分析】
(1)综合利用提公因式法和公式法进行因式分解即可得;
(2)利用分组分解法进行因式分解即可得;
(3)先利用公式法分解和,从而可得的值,再代入计算即可得;
(4)先利用十字相乘法分解,再利用提公因式法进行因式分解即可得.
【详解】
解:(1)原式
;
(2)原式
;
(3),
,
,
;
(4)原式
.
【点睛】
本题考查了因式分解和因式分解的应用,熟练掌握并灵活运用因式分解的各方法是解题关键.
5、
【解析】
【分析】
利用分组分解法分解因式即可.
【详解】
解:,
=,
=,
=.
【点睛】
本题考查了因式分解,解题关键是恰当对多项式进行分组,熟练运用提取公因式和公式法进行分解.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试精练,共16页。试卷主要包含了下列因式分解正确的是.,下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共17页。试卷主要包含了如果x2+kx﹣10=,若a2=b+2,b2=a+2,,已知,,求代数式的值为等内容,欢迎下载使用。
这是一份2020-2021学年第十一章 因式分解综合与测试当堂检测题,共17页。试卷主要包含了已知实数x,y满足,已知c<a<b<0,若M=|a,已知a2等内容,欢迎下载使用。