2021学年第十一章 因式分解综合与测试同步测试题
展开冀教版七年级数学下册第十一章 因式分解章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若能分解成两个因式的积,则整数a的取值可能有( )
A.4个 B.6个 C.8个 D.无数个
2、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)
3、如果x2+kx﹣10=(x﹣5)(x+2),则k应为( )
A.﹣3 B.3 C.7 D.﹣7
4、下列各式从左至右是因式分解的是( )
A. B.
C. D.
5、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )
A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1
C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c
6、下列从左边到右边的变形,是因式分解的是( )
A.(3﹣x)(3+x)=9﹣x2 B.x2+y2=(x+y)(x﹣y)
C.x2﹣x=x(x﹣1) D.2yz﹣y2z+z=y(2z﹣yz)+z
7、下列式子从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
8、多项式分解因式的结果是( )
A. B.
C. D.
9、已知a2(b+c)=b2(a+c)=2021,且a、b、c互不相等,则c2(a+b)﹣2020=( )
A.0 B.1 C.2020 D.2021
10、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:_______.
2、因式分解:4x2y2﹣2x3y=______.
3、分解因式_________.
4、已知x2+mx+16能用完全平方公式因式分解,则m的值为 ___.
5、分解因式a2-10a+25的结果是______.
三、解答题(5小题,每小题10分,共计50分)
1、 ((1)(2)小题计算,(3)(4)小题因式分解)
(1);
(2)(x﹣2y)(3x+2y)﹣;
(3)9(x﹣y)+4(y﹣x) ;
(4) a+2x+.
2、因式分解:
(1)2x(x-3)-8;
(2)a2-b2-6a+9.
3、阅读下面材料:小颖这学期学习了轴对称的知识,知道了像角、等腰三角形、正方形、圆等图形都是轴对称图形,类比这一特性,小颖发现像等代数式,如果任意交换两个字母的位置,式子的值都不变.太神奇了!于是她把这样的式子命名为神奇对称式,她还发现像等神奇对称式都可以用表示.例如:,.于是小颖把和称为基本神奇对称式,请根据以上材料解决下列问题:
(1)①,②,③,④中,属于神奇对称式的是_______(填序号);
(2)已知.
①若,则神奇对称式_______;
②若,求神奇对称式的最小值.
4、因式分解
(1)
(2)
5、仔细阅读下面例题,解答问题:
例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.
解:设另一个因式为(x+n),得
x2﹣4x+m=(x+3)(x+n),
则x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21
∴另一个因式为(x﹣7),m的值为﹣21.
问题:仿照以上方法解答下面问题:
已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.
-参考答案-
一、单选题
1、B
【解析】
【分析】
把18分解为两个整数的积的形式,a等于这两个整数的和.
【详解】
解:18=1×18=2×9=3×6=(-1)×(-18)=(-2)×(-9)=(-3)×(-6),
所以a=1+18=19或2+9=11或3+6=9或(-1)+(-18)=-19或(-2)+(-9)=-11或(-3)+(=6)=-9.
∴整数a的值是±9或±11或±19,共有6个.
故选:B.
【点睛】
本题考查了十字相乘法分解因式,对常数项的不同分解是解题的关键.
2、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
3、A
【解析】
【分析】
根据多项式乘以多项式把等号右边展开,即可得答案.
【详解】
解:(x-5)(x+2)=x2-3x-10,
则k=-3,
故选:A.
【点睛】
本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q).
4、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
5、A
【解析】
【分析】
将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.
【详解】
解:,
,
,
∴或,
即:或,
A选项中,若,则正确;
其他三个选项均不能得出,
故选:A.
【点睛】
题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.
6、C
【解析】
【分析】
根据因式分解的定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式),进行判断即可.
【详解】
解:A、(3﹣x)(3+x)=9﹣x2属于整式的乘法运算,不是因式分解,不符合题意;
B、,原式错误,不符合题意;
C、x2﹣x=x(x﹣1),属于因式分解,符合题意;
D、2yz﹣y2z+z=,原式分解错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记因式分解的定义即把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解(也叫作分解因式)是解本题的关键.
7、B
【解析】
【分析】
把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.
【详解】
解:是整式的乘法,故A不符合题意;
是因式分解,故B符合题意;
右边不是整式的积的形式,不是因式分解,故C不符合题意;
右边不是整式的积的形式,不是因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.
8、B
【解析】
【分析】
先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).
【详解】
解:ax2-ay2
=a(x2-y2)
=a(x+y)(x-y).
故选:B.
【点睛】
本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
9、B
【解析】
【分析】
根据题意先通过已知等式,找到a,b,c的关系再求值即可得出答案.
【详解】
解:∵a2(b+c)=b2(a+c).
∴a2b+a2c﹣ab2﹣b2c=0.
∴ab(a﹣b)+c(a+b)(a﹣b)=0.
∴(a﹣b)(ab+ac+bc)=0.
∵a≠b.
∵a2(b+c)=2021.
∴a(ab+ac)=2021.
∴a(﹣bc)=2021.
∴﹣abc=2021.
∴abc=﹣2021.
∴原式=c(ac+bc)﹣2020=c(﹣ab)﹣2020
=﹣abc﹣2020
=2021﹣2020
=1.
故选:B.
【点睛】
本题考查用因式分解求代数式的值,利用题中等式得到ab+bc+ac=0是解答本题的关键.
10、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
二、填空题
1、x(x+2y)(x-2y)
【解析】
【分析】
先提取公因式,再用平方差公式进行分解即可.
【详解】
解:x3-4xy2
=x(x2-4y2)
=x(x+2y)(x-2y)
故答案为:x(x+2y)(x-2y)
【点睛】
本题考查了分解因式,分解因式要先提取公因式,再运用公式,分解因式方法可以参考口诀“一提,二套,三分组,十字相乘做辅助”灵活运用所学方法进行分解,注意:分解要彻底.
2、2x2y(2y-x)
【解析】
【分析】
直接提取公因式2x2y,进而分解因式即可.
【详解】
解:4x2y2-2x3y=2x2y(2y-x).
故答案为:2x2y(2y-x).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
3、
【解析】
【分析】
直接提取公因式m,进而分解因式得出答案.
【详解】
解:
=m(m+6).
故答案为:m(m+6).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
4、
【解析】
【分析】
利用完全平方公式的结构特征判断,确定出m的值即可得到答案.
【详解】
解:∵要使得能用完全平方公式分解因式,
∴应满足,
∵,
∴,
故答案为:.
【点睛】
此题考查了因式分解-运用公式法,熟练掌握因式分解的方法、完全平方公式是解本题的关键.
5、(a-5)2
【解析】
【分析】
直接用完全平方公式进行因式分解即可.
【详解】
a2-10a+25=(a-5)2
故答案为:(a-5)2.
【点睛】
此题考查了公式法分解因式,熟记完全平方公式是解本题的关键.
三、解答题
1、(1)-5;(2)2﹣8;(3);(4)a
【解析】
【分析】
(1)根据=2, ,整理计算即可;
(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;
(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;
(4) 先提取公因式a,后套用和的完全平方公式分解即可.
【详解】
解:(1)
=2+1-9+1
=-5;
(2)(x﹣2y)(3x+2y)﹣
=3+2xy﹣6xy﹣4﹣+4xy﹣4
=2﹣8;
(3)9(x﹣y)+4(y﹣x)
=
=;
(4)a+2x+
=a(+2ax+)
=a.
【点睛】
本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键.
2、 (1)2(x-4)(x+1)
(2)
【解析】
【分析】
(1)先去括号,再提公因式2,最后利用十字相乘法解题;
(2)先分组,再结合平方差公式、完全平方公式解题.
(1)
2x(x-3)-8=2x2-6x-8=2(x2-3x-4)=2(x-4)(x+1)
(2)
a2-b2-6a+9= a2 -6a+9-b2
=
【点睛】
本题考查因式分解,是重要考点,涉及平方差公式、完全平方公式,掌握相关知识是解题关键.
3、 (1)①④
(2)①;②
【解析】
【分析】
(1)神奇对称式是指任意交换两个字母的位置,式子的值都不变的代数式;由定义可知,交换①②③中④中、、的位置,若值不变则符合题意.
(2)①将代入中求得的值,代入求解即可.②将代入中求得的值,由求出的取值范围;将进行配方得将的最小值代入即可.
(1)
解:将①②③中交换位置可得
①,符合题意;
②,不符合题意;
③,不符合题意;
④交换的位置,同理交换其他两个仍成立,符合题意;
故答案为:①④.
(2)
解:①
或
代入得
故答案为:.
②,
有
或
∴神奇对称式的最小值为.
【点睛】
本题考查了因式分解,完全平方公式,不等式等知识.解题的关键在于因式分解得到m、n的关系,不等式求出代数式m+n的取值范围,配完全平方表示出所求代数式的形式.
4、(1);(2)
【解析】
【分析】
(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;
(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.
5、另一个因式为(2x+13),k的值为65.
【解析】
【分析】
设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.
【详解】
解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)
则2x2+3x﹣k=2x2+(a﹣10)x﹣5a
∴,
解得:a=13,k=65.
故另一个因式为(2x+13),k的值为65.
【点睛】
此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.
初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列因式分解正确的是,计算的值是,已知实数x,y满足等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试达标测试: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试达标测试,共18页。试卷主要包含了下列运算错误的是,下列因式分解正确的是,分解因式2a2,下列各式因式分解正确的是等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试课后作业题: 这是一份冀教版七年级下册第十一章 因式分解综合与测试课后作业题,共18页。试卷主要包含了因式分解,已知c<a<b<0,若M=|a,下列因式分解正确的是.等内容,欢迎下载使用。