![2022年最新冀教版七年级数学下册第十一章 因式分解章节测评试题第1页](http://www.enxinlong.com/img-preview/2/3/12719488/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版七年级数学下册第十一章 因式分解章节测评试题第2页](http://www.enxinlong.com/img-preview/2/3/12719488/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版七年级数学下册第十一章 因式分解章节测评试题第3页](http://www.enxinlong.com/img-preview/2/3/12719488/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版七年级下册第十一章 因式分解综合与测试课后复习题
展开这是一份冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共18页。试卷主要包含了下列各式因式分解正确的是,下列因式分解中,正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、计算的值是( )
A. B. C. D.2
2、下列从左边到右边的变形,属于因式分解的是( )
A. B.
C. D.
3、分解因式2a2(x-y)+2b2(y-x)的结果是( )
A.(2a2+2b2) (x-y) B.(2a2-2b2) (x-y)
C.2(a2-b2) (x-y) D.2(a-b)(a+b)(x-y)
4、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )
A.a(m+n)+b(m+n)=(a+b)(m+n)
B.m(a+b)+n(a+b)=(a+b)(m+n)
C.am+bm+an+bn=(a+b)(m+n)
D.ab+mn+am+bn=(a+b)(m+n)
5、下列各式因式分解正确的是( )
A. B.
C. D.
6、下列因式分解中,正确的是( )
A. B.
C. D.
7、下列多项式中,能用完全平方公式分解因式的是( )
A.a2+4 B.x2+6x+9 C.x2﹣2x﹣1 D.a2+ab+b2
8、下列等式从左到右的变形,属于因式分解的是( )
A. ﹣2x﹣1= B.(a+b)(a﹣b)=
C.﹣4x+4= D.﹣1=
9、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
10、下列各等式中,从左到右的变形是正确的因式分解的是( )
A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)
C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:_________.
2、因式分解___________.
3、当x=4,a+b=-3时,代数式:ax+bx的值为________.
4、分解因式:3y2﹣12=______________.
5、因式分解:4x2y2﹣2x3y=______.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
2、分解因式:
(1)
(2)16-8(x-y)+(x-y)2
3、如果的三边长满足等式,试判断此的形状并写出你的判断依据.
4、 ((1)(2)小题计算,(3)(4)小题因式分解)
(1);
(2)(x﹣2y)(3x+2y)﹣;
(3)9(x﹣y)+4(y﹣x) ;
(4) a+2x+.
5、分解因式:
(1);
(2);
(3)计算:;
(4).
-参考答案-
一、单选题
1、B
【解析】
【分析】
直接找出公因式进而提取公因式,进行分解因式即可.
【详解】
解:.
故选:B
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
2、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化为几个整式的积的形式),平方差公式、完全平方公式,提公因式法依次进行因式分解判断即可得.
【详解】
解:A、选项为整式的乘法;
B、,选项错误;
C、,选项错误;
D、选项正确;
故选:D.
【点睛】
题目主要考查因式分解的定义及方法,熟练掌握利用公式因式分解是解题关键.
3、D
【解析】
【分析】
根据提公因式法和平方差公式分解因式.
【详解】
解:2a2(x-y)+2b2(y-x)
=2a2(x-y)-2b2(x-y)
=(2a2-2b2)(x-y)
=2(a2-b2)(x-y)
=2(a-b)(a+b)(x-y).
故选:D.
【点睛】
此题考查了分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式及十字相乘法)是解题的关键.
4、D
【解析】
【分析】
由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可
【详解】
解:如图②,S长方形ABCD=(a+b)(m+n),
A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;
B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;
C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;
D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;
故选:D.
【点睛】
本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.
5、B
【解析】
【分析】
根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.
【详解】
解:A、不能进行因式分解,错误;
B、选项正确,是因式分解;
C、选项是整式的乘法,不是因式分解,不符合题意;
D、,选项因式分解错误;
故选:B.
【点睛】
题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.
6、D
【解析】
【分析】
A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.
【详解】
解:A、原式,不符合题意;
B、原式,不符合题意;
C、原式不能分解,不符合题意;
D、原式,符合题意.
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、B
【解析】
【分析】
根据完全平方公式分解因式法解答.
【详解】
解:x2+6x+9=(x+3)2.
故选:B.
【点睛】
此题考查了利用完全平方公式分解因式,掌握该方法分解的多项式的特点:共三项,其中有两项为平方项,第三项为这两项底数的积的2倍.
8、C
【解析】
【分析】
根据因式分解的定义和方法逐一判断即可.
【详解】
∵=﹣2x+1≠﹣2x﹣1,
∴A不是因式分解,不符合题意;
∵(a+b)(a﹣b)=不符合因式分解的定义,
∴B不是因式分解,不符合题意;
∵﹣4x+4=,符合因式分解的定义,
∴C是因式分解,符合题意;
∵﹣1≠,不符合因式分解的定义,
∴D不是因式分解,不符合题意;
故选C.
【点睛】
本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.
9、C
【解析】
【分析】
根据因式分解的定义判断即可.
【详解】
解:因式分解即把一个多项式化成几个整式的积的形式.
A. ,不是几个整式的积的形式,A选项不是因式分解;
B. ,不是几个整式的积的形式,B选项不是因式分解
C. ,符合因式分解的定义,C是因式分解.
D. ,不是几个整式的积的形式,D选项不是因式分解;
故选C
【点睛】
本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.
10、B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
解:A、是整式的乘法,不是因式分解,故此选项不符合题意;
B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;
C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;
D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.
故选:B.
【点睛】
本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.
二、填空题
1、##(a+1)( a-5)
【解析】
【分析】
根据十字相乘法进行因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了因式分解,熟练掌握十字相乘法是解本题的关键.
2、
【解析】
【分析】
先提公因式再根据平方差公式因式分解即可
【详解】
解:
故答案为:
【点睛】
本题考查了提公因式和公式法因式分解,掌握因式分解的方法是解题的关键.
3、-12
【解析】
【分析】
本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.
【详解】
解:∵x=4,a+b=-3
∴ax+bx
故答案为:-12
【点睛】
本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.
4、
【解析】
【分析】
先提取公因式3,然后再根据平方差公式进行因式分解即可.
【详解】
解:;
故答案为.
【点睛】
本题主要考查因式分解,熟练掌握因式分解是解题的关键.
5、2x2y(2y-x)
【解析】
【分析】
直接提取公因式2x2y,进而分解因式即可.
【详解】
解:4x2y2-2x3y=2x2y(2y-x).
故答案为:2x2y(2y-x).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
三、解答题
1、
【解析】
【分析】
直接提取公因式xy,再利用完全平方公式分解因式得出答案
【详解】
解:
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.
2、 (1)
(2)
【解析】
【分析】
(1)先提公因式x,再利用完全平方公式分解因式;
(2)根据完全平方公式分解即可.
(1)
解:原式=
=
(2)
解:原式=.
【点睛】
此题考查了因式分解:将一个多项式写成几个整式的积的形式,叫将多项式分解因式,熟记因式分解的定义并掌握因式分解的方法是解题的关键.
3、是等边三角形,理由见解析
【解析】
【分析】
利用因式分解得出三边长的关系,即可判断三角形形状.
【详解】
解:是等边三角形
证明:∵,
∴.
∴,
即,
∴,
∴,即,
∴是等边三角形.
【点睛】
本题考查了因式分解的应用,解题关键是熟练进行因式分解,得出三角形的三边关系.
4、(1)-5;(2)2﹣8;(3);(4)a
【解析】
【分析】
(1)根据=2, ,整理计算即可;
(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;
(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;
(4) 先提取公因式a,后套用和的完全平方公式分解即可.
【详解】
解:(1)
=2+1-9+1
=-5;
(2)(x﹣2y)(3x+2y)﹣
=3+2xy﹣6xy﹣4﹣+4xy﹣4
=2﹣8;
(3)9(x﹣y)+4(y﹣x)
=
=;
(4)a+2x+
=a(+2ax+)
=a.
【点睛】
本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键.
5、(1);(2);(3)85;(4).
【解析】
【分析】
(1)综合利用提公因式法和公式法进行因式分解即可得;
(2)利用分组分解法进行因式分解即可得;
(3)先利用公式法分解和,从而可得的值,再代入计算即可得;
(4)先利用十字相乘法分解,再利用提公因式法进行因式分解即可得.
【详解】
解:(1)原式
;
(2)原式
;
(3),
,
,
;
(4)原式
.
【点睛】
本题考查了因式分解和因式分解的应用,熟练掌握并灵活运用因式分解的各方法是解题关键.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了下列因式分解正确的是,已知,,那么的值为,下列多项式等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试同步训练题,共18页。试卷主要包含了下列变形,属因式分解的是,下列各式因式分解正确的是,下列因式分解错误的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课堂检测,共16页。试卷主要包含了下列各式中,正确的因式分解是,下列因式分解正确的是等内容,欢迎下载使用。