![精品试卷冀教版七年级数学下册第十一章 因式分解同步测评试卷(精选含答案)第1页](http://www.enxinlong.com/img-preview/2/3/12719535/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第十一章 因式分解同步测评试卷(精选含答案)第2页](http://www.enxinlong.com/img-preview/2/3/12719535/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第十一章 因式分解同步测评试卷(精选含答案)第3页](http://www.enxinlong.com/img-preview/2/3/12719535/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第十一章 因式分解综合与测试综合训练题
展开这是一份2020-2021学年第十一章 因式分解综合与测试综合训练题,共17页。试卷主要包含了已知,,求代数式的值为,下列因式分解中,正确的是,下列各式中,不能因式分解的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若、、为一个三角形的三边长,则式子的值( )
A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为0
2、下列多项式不能因式分解的是( )
A. B. C. D.
3、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )
A.﹣1 B.0 C.1 D.3
4、下列从左到右的变形属于因式分解的是( )
A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2
C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)
5、已知,,求代数式的值为( )
A.18 B.28 C.50 D.60
6、下列因式分解中,正确的是( )
A. B.
C. D.
7、下列各等式中,从左到右的变形是正确的因式分解的是( )
A.2x•(x﹣y)=2x2﹣2xy B.(x+y)2﹣x2=y(2x+y)
C.3mx2﹣2nx+x=x(3mx﹣2n) D.x2+3x﹣2=x(x+3)﹣2
8、下列各式从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
9、下列各式中,不能因式分解的是( )
A.4x2﹣4x+1 B.x2﹣4y2
C.x3﹣2x2y+xy2 D.x2+y2+x2y2
10、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )
A.非负数 B.正数 C.负数 D.非正数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式定理:对于多项式,若,则是的一个因式,并且可以通过添减单项式从中分离出来.例如,由于,所以是的一个因式.于是.则______.
2、因式分解:________.
3、要使多项式x2﹣ax﹣20在整数范围内可因式分解,给出整数a=____________.
4、在实数范围内分解因式:x2﹣3xy﹣y2=___.
5、分解因式:_________.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1)计算:(2a)3•b4÷4a3b2;
(2)计算:(a﹣2b+1)2;
(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.
2、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(.b是正整数,且a≤b),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M(9)==1
(1)求M(8);M(24);M[(c+1)2]的值;
(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1≤x≤y≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值.
3、分解因式
(1)
(2)
4、已知xy=5,x2y﹣xy2﹣x+y=40.
(1)求x﹣y的值.
(2)求x2+y2的值.
5、观察下列因式分解的过程:
①
②
③
……
根据上述因式分解的方法,尝试将下列各式进行因式分解:
(1);
(2).
-参考答案-
一、单选题
1、B
【解析】
【分析】
先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.
【详解】
解:原式=(a-c+b)(a-c-b),
∵两边之和大于第三边,两边之差小于第三边,
∴a-c+b>0,a-c-b<0,
∵两数相乘,异号得负,
∴代数式的值小于0.
故选:B.
【点睛】
本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.
2、A
【解析】
【分析】
根据平方差公式、完全平方公式分解因式即可.
【详解】
解:A、不能因式分解,符合题意;
B、=,能因式分解,不符合题意;
C、=,能因式分解,不符合题意;
D、 =,能因式分解,不符合题意,
故选:A.
【点睛】
本题考查因式分解、完全平方公式、平方差公式,熟记公式,掌握因式分解的结构特征是解答的关键.
3、D
【解析】
【分析】
由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.
【详解】
解:∵a2=b+2,b2=a+2,且a≠b,
∴a2−b2=b−a,
即(a+b)(a-b)=b-a,
∴a+b=−1,
∴a2-b2-2b+2
=(a+b)(a-b)−2b+2
=b−a-2b+2
=-(a+b)+2
=1+2
=3.
故选:D.
【点睛】
本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.
4、D
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.
【详解】
解:A.x2+2x+1=(x+1)2,故A不符合题意;
B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;
C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;
D.2x2-5x=x(2x-5)是因式分解,故D符合题意;
故选:D.
【点睛】
本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.
5、A
【解析】
【分析】
先利用提公因式法和完全平方公式对所求代数式因式分解,再整体代入求值即可.
【详解】
解:
=
=,
当,时,
原式=2×32=2×9=18,
故选:A.
【点睛】
本题考查代数式求值、因式分解、完全平方公式,熟记公式,熟练掌握因式分解的方法是解答的关键.
6、D
【解析】
【分析】
A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.
【详解】
解:A、原式,不符合题意;
B、原式,不符合题意;
C、原式不能分解,不符合题意;
D、原式,符合题意.
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、B
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.
【详解】
解:A、是整式的乘法,不是因式分解,故此选项不符合题意;
B、(x+y)2﹣x2=2xy+y2=y(2x+y),把一个多项式转化成几个整式乘积的形式,是因式分解,故此选项符合题意;
C、3mx2﹣2nx+x=x(3mx﹣2n+1),故此选项不符合题意;
D、没把一个多项式转化成几个整式乘积的形式,不是因式分解,故此选项不符合题意.
故选:B.
【点睛】
本题考查了因式分解的定义.严格按照因式分解的定义去验证每个选项是正确解答本题的关键.
8、B
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:、是单项式的乘法,不是因式分解,故本选项不符合题意;
、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意;
、是整式的乘法,不是因式分解,故本选项不符合题意;
、因式分解错误,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
9、D
【解析】
【分析】
直接利用公式法以及提取公因式分解因式进而判断即可.
【详解】
解:A、4x2﹣4x+1=(2x−1)2,故本选项不合题意;
B、x2﹣4y2=(x+2y)(x-2y),故本选项不合题意;
C、x3﹣2x2y+xy2=x(x-y)2,故本选项不合题意;
D、x2+y2+x2y2不能因式分解,故本选项符合题意;
故选:D.
【点睛】
此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.
10、A
【解析】
【分析】
先把原式化为,结合完全平方公式可得原式可化为从而可得答案.
【详解】
解:x2-4x+y2-6y+13
故选A
【点睛】
本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.
二、填空题
1、
【解析】
【分析】
将添减单项式后分解因式即可得到答案.
【详解】
解:
=
=
=
故答案为:.
【点睛】
此题考查了多项式的分解因式,正确添减单项式利用分组分解法分解因式是解题的关键.
2、
【解析】
【分析】
直接利用平方差公式()进行因式分解即可得.
【详解】
解:,
故答案为:.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法是解题关键.
3、±1或±19或±8
【解析】
【分析】
把﹣20分成20和﹣1,﹣2和10,5和﹣4,﹣5和4,2和﹣10,﹣20和1,进而得出即原式分解为(x+20)(x﹣1),(x﹣2)(x+10),(x+5)(x﹣4),(x﹣5)(x+4),(x+2)(x﹣10),(x﹣20)(x+1),即可得到答案.
【详解】
解:当x2﹣ax﹣20=(x+20)(x﹣1)时,a=20+(﹣1)=19,
当x2﹣ax﹣20=(x﹣2)(x+10)时,a=﹣2+10=8,
当x2﹣ax﹣20=(x+5)(x﹣4)时,a=5+(﹣4)=1,
当x2﹣ax﹣20=(x﹣5)(x+4)时,a=﹣5+4=﹣1,
当x2﹣ax﹣20=(x+2)(x﹣10)时,a=2+(﹣10)=﹣8,
当x2﹣ax﹣20=(x﹣20)(x+1)时,a=﹣20+1=﹣19,
综上所述:整数a的值为±1或±19或±8.
故答案为:±1或±19或±8.
【点睛】
本题主要考查对因式分解−十字相乘法的理解和掌握,理解x2+(a+b)x+ab=(x+a)(x+b)是解此题的关键.
4、
【解析】
【分析】
先利用配方法,再利用平方差公式即可得.
【详解】
解:
=
=
=.
故答案为:.
【点睛】
本题主要考查了用配方法和平方差公式法进行因式分解,因式分解的常用方法有:配方法、公式法、提取公因式法、十字相乘法等.
5、##(a+1)( a-5)
【解析】
【分析】
根据十字相乘法进行因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了因式分解,熟练掌握十字相乘法是解本题的关键.
三、解答题
1、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).
【解析】
【分析】
(1)先计算乘方,再计算除法可得;
(2)利用完全平方公式计算可得;
(3)先提公因式,再利用平方差分解可得.
【详解】
(1)原式=8a3•b4÷4a3b2
=8a3b4÷4a3b2
=2b2;
(2)原式=[(a﹣2b)+1]2
=(a﹣2b)2+2(a﹣2b)+12
=a2﹣4ab+4b2+2a﹣4b+1;
(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]
=(4a﹣4b)•(﹣2a)
=﹣8a(a﹣b).
【点睛】
本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.
2、(1);;1;(2);
【解析】
【分析】
(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)==,M(24)==,M[(c+1)2]= ;
(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)==,M(33)=,所以所有“吉祥数”中M(d)的最大值为.
【详解】
解:(1)由题意得,
M(8)==;
M(24)==;
M[(c+1)2]=;
(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',
则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,
∵x,y都是自然数,且1≤x≤y≤9,
∴满足条件的“吉祥数”有15、24、33
∴M(15)=,M(24)==,M(33)=,
∵>>,
∴所有“吉祥数”中M(d)的最大值为.
【点睛】
本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.
3、(1)4xy(y+1)2;(2)-5(a-b)2
【解析】
【分析】
(1)提公因式后利用完全平方公式分解即可;
(2)提公因式后利用完全平方公式分解即可.
【详解】
(1),
,
=4xy(y+1)2;
(2),
,
=-5(a-b)2.
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意有公因式先提公因式,然后再继续分解.
4、(1)x﹣y=10;(2)x2+y2=110.
【解析】
【分析】
(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.
(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.
【详解】
解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,
∴x2y﹣xy2﹣x+y
=xy(x﹣y)﹣(x﹣y)
=(xy﹣1)(x﹣y)
∵xy=5,
∴(5﹣1)(x﹣y)=40,
∴x﹣y=10.
(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.
【点睛】
本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.
5、(1);(2)
【解析】
【分析】
(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;
(2)根据题中的方法分解因式即可.
【详解】
解:(1);
(2).
【点睛】
本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解.
相关试卷
这是一份冀教版七年级下册第十一章 因式分解综合与测试课时作业,共16页。试卷主要包含了下列各式因式分解正确的是等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试随堂练习题,共18页。试卷主要包含了下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
这是一份初中冀教版第十一章 因式分解综合与测试精练,共18页。试卷主要包含了把代数式分解因式,正确的结果是,已知x2+x﹣6=,当n为自然数时,,把多项式分解因式,其结果是等内容,欢迎下载使用。