![精品试卷冀教版七年级数学下册第十一章 因式分解专项练习试题(名师精选)第1页](http://www.enxinlong.com/img-preview/2/3/12719746/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第十一章 因式分解专项练习试题(名师精选)第2页](http://www.enxinlong.com/img-preview/2/3/12719746/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试卷冀教版七年级数学下册第十一章 因式分解专项练习试题(名师精选)第3页](http://www.enxinlong.com/img-preview/2/3/12719746/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第十一章 因式分解综合与测试同步练习题
展开这是一份初中冀教版第十一章 因式分解综合与测试同步练习题,共18页。试卷主要包含了下列变形,属因式分解的是,下列各式中,正确的因式分解是,已知,,求代数式的值为等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式从左到右的变形,属于因式分解的是( )
A.(x+1)(x﹣1)=x2﹣1 B.x2﹣8x+16=(x﹣4)2
C.x2﹣2x+1=x(x﹣1)+1 D.x2﹣4y2=(x+4y)(x﹣4y)
2、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
3、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3) B.a(a﹣9)
C.(a﹣3)2 D.(a+3)(a﹣3)
4、下列变形,属因式分解的是( )
A. B.
C. D.
5、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
6、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
7、下列各式中,正确的因式分解是( )
A.
B.
C.
D.
8、已知,,求代数式的值为( )
A.18 B.28 C.50 D.60
9、把多项式因式分解得,则常数,的值分别为( )
A., B.,
C., D.,
10、下列各式从左到右的变形属于因式分解的是( )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x•3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、把多项式a3﹣9ab2分解因式的结果是 _____.
2、分解因式:______.
3、若,则_________.
4、分解因式:2x3﹣x2=_____.
5、若a,b都是有理数,且满足a2+b2+5=4a﹣2b,则(a+b)2021=_____.
三、解答题(5小题,每小题10分,共计50分)
1、观察下列因式分解的过程:
①
②
③
……
根据上述因式分解的方法,尝试将下列各式进行因式分解:
(1);
(2).
2、在因式分解的学习中我们知道对二次三项式可用十字相乘法方法得出,用上述方法将下列各式因式分解:
(1)__________.
(2)__________.
(3)__________.
(4)__________.
3、在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.
(1)请根据以上方法判断31568_____(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,求所有符合条件的N的值.
(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.
4、(1)计算:2·+;
(2)因式分解:3+12+12x.
5、分解因式:
(1);
(2).
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据因式分解的定义“把一个多项式化成几个整式的积的形式叫做因式分解”进行解答即可得.
【详解】
解:A、,不是因式分解,选项说法错误,不符合题意;
B、,是因式分解,选项说法正确,符合题意;
C、,不是因式分解,选项说法错误,不符合题意;
D、左、右不相等,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了因式分解,解题的关键是熟记因式分解的定义.
2、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.
4、A
【解析】
【分析】
依据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式判断即可.
【详解】
解:A、是因式分解,故此选项符合题意;
B、分解错误,故此选项不符合题意;
C、右边不是几个整式的积的形式,故此选项不符合题意;
D、分解错误,故此选项不符合题意;
故选:A.
【点睛】
本题主要考查的是因式分解的意义,掌握因式分解的定义是解题的关键.
5、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
6、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
7、B
【解析】
【分析】
直接利用公式法以及提取公因式法分解因式,进而判断得出答案.
【详解】
解:.,故此选项不合题意;
.,故此选项符合题意;
.,故此选项不合题意;
.,故此选项不合题意;
故选:.
【点睛】
本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.
8、A
【解析】
【分析】
先利用提公因式法和完全平方公式对所求代数式因式分解,再整体代入求值即可.
【详解】
解:
=
=,
当,时,
原式=2×32=2×9=18,
故选:A.
【点睛】
本题考查代数式求值、因式分解、完全平方公式,熟记公式,熟练掌握因式分解的方法是解答的关键.
9、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
10、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.
二、填空题
1、a(a+3b)(a-3b)
【解析】
【分析】
根据题意直接提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
解:a3-9ab2
=a(a2-9b2)
=a(a+3b)(a-3b).
故答案为:a(a+3b)(a-3b).
【点睛】
本题主要考查提取公因式法以及公式法分解因式,正确运用平方差公式分解因式是解题的关键.
2、
【解析】
【分析】
用提公因式法即可分解因式.
【详解】
.
故答案为:.
【点睛】
本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.
3、2022
【解析】
【分析】
根据,得,然后局部运用因式分解的方法达到降次的目的,整体代入求解即可.
【详解】
∵
∴
∴
故填“2022”.
【点睛】
本题主要考查了因式分解,善于运用因式分解的方法达到降次的目的,渗透整体代入的思想是解决本题的关键.
4、x2(2x﹣1)
【解析】
【分析】
根据提公因式法分解.
【详解】
解:2x3﹣x2=x2(2x﹣1),
故答案为:x2(2x﹣1).
【点睛】
此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式、十字相乘)是解题的关键.
5、1
【解析】
【分析】
首先利用完全平方公式得出a,b的值,进而得出答案.
【详解】
解:∵a2+b2+5=4a﹣2b,
∴ ,
∴(a﹣2)2+(b+1)2=0,
∴a=2,b=﹣1,
∴(a+b)2021=(2﹣1)2021=1.
故答案为:1
【点睛】
本题主要考查了完全平方公式的应用,熟练掌握 ,是解题的关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)根据题中的方法,适当加减适合的数,再提取公因式,将各式分解即可;
(2)根据题中的方法分解因式即可.
【详解】
解:(1);
(2).
【点睛】
本题考查了因式分解,解题的关键是熟练掌握提取公因式进行因式分解.
2、 (1)(x-y)(x+6y)
(2)(x-3a)(x-a-2)
(3)(x+a-3b)(x-a-2b)
(4)(20182x2+1)(x-1)
【解析】
【分析】
(1)将-6y2改写成-y·6,然后根据例题分解即可;
(2)将3a2+6a改写成,然后根据例题分解即可;
(3)先化简,将改写,然后根据例题分解即可;
(4)将改写成(2018-1)(2018+1),变形后根据例题分解即可;
(1)
解:原式=
=(x-y)(x+6y);
(2)
解:原式=
=(x-3a)(x-a-2);
(3)
解:原式=
=
=
=(x+a-3b)(x-a-2b);
(4)
解:原式=
=
=
=(20182x+1)(x-1) .
【点睛】
本题考查了十字相乘法因式分解,熟练掌握二次三项式可用十字相乘法方法得出是解答本题的关键.
3、 (1)是,所有符合条件的N的值为5326,5662
(2)见解析
【解析】
【分析】
(1)分别得出31568的“顺数”与“逆数”,求差,计算能否被17整除即可判断;设“最佳拍档数”N的十位数字为x,百位数字为y,可用x、y表示出N,根据“顺数”与“逆数”的定义可表示出“顺数”与“逆数”的差为90(66﹣x﹣10y),根据“最佳拍档数”的定义可得90(66﹣x﹣10y)能被17整除,即可得出符合题意x、y的值,即可得答案;
(2)设三位正整数K的个位数字为x,十位数字为y,百位数字为z,可表示出“顺数”与“逆数”的差,可判断差能否被30整除;同理可判断四位正整数“顺数”与“逆数”的差能否被30整除,综上即可得答案.
(1)
(1)31568的“顺数”为361568,31568的“逆数”为315668,
(361568-315668)÷17=2700;
∴31568是“最佳拍档数”,
设“最佳拍档数”N的十位数字为x,百位数字为y,
N=5000+100y+10x+8﹣x=100y+9x+5008,
∵N是四位“最佳拍档数”,
∴50000+6000+100y+10x+3﹣x﹣[50000+1000y+100x+60+8﹣x],
=6000+100y+9x+2﹣1000y﹣100x﹣68+x,
=5940﹣90x﹣900y,
=90(66﹣x﹣10y),
∴66﹣x﹣10y能被17整除,
①x=2,y=3时,能被17整除;
∴十位数字为2,百位数
②x=6,y=6时,能被17整除;
综上,所有符合条件的N的值为5326,5662
故答案为:是
(2)
(2)设三位正整数K的个位数字为x,十位数字为y,百位数字为z,
它的“顺数”:1000z+600+10y+x,
它的“逆数”:1000z+100y+60+x,
∴(1000z+600+10y+x)﹣(1000z+100y+60+x)
=540﹣90y
=90(6﹣y),
∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,
设四位正整数K的个位数字为x,十位数字为y,千位数字为a,
∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)
=5940﹣900z﹣90y
=90(66﹣10z﹣y),
∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,
∴任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.
【点睛】
本题考查“顺数”、“逆数”与“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,正确分解因式是解题关键.
4、(1)0;(2)3x
【解析】
【分析】
(1)根据题意,得·=,,合并同类项即可;
(2)先提取公因式3x,后套用完全平方公式即可.
【详解】
(1)2·+
原式=2+-3
=0.
(2)原式=3x(+4x+4)
=3x.
【点睛】
本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)提取公因式,然后用完全平方公式进行化简即可.
(2)提取公因式,然后用平方差公式进行化简即可.
(1)
解:原式;
(2)
解:原式
.
【点睛】
本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.
相关试卷
这是一份初中第十一章 因式分解综合与测试同步练习题,共17页。试卷主要包含了下列分解因式正确的是,若a,下列因式分解正确的是.等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试课后复习题,共18页。试卷主要包含了下列因式分解错误的是,下列因式分解正确的是等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试测试题,共15页。试卷主要包含了把分解因式的结果是.,因式分解等内容,欢迎下载使用。