冀教版七年级下册第十一章 因式分解综合与测试精练
展开
这是一份冀教版七年级下册第十一章 因式分解综合与测试精练,共17页。试卷主要包含了已知实数x,y满足,计算的值是,下列各式从左至右是因式分解的是,如果x2+kx﹣10=,若a2=b+2,b2=a+2,等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.2、下列各式中,正确的因式分解是( )A.B.C.D.3、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+14、下列等式从左到右的变形,属于因式分解的是( )A. ﹣2x﹣1= B.(a+b)(a﹣b)=C.﹣4x+4= D.﹣1=5、已知实数x,y满足:x2−+2=0,y2−+2=0,则2022|x−y|的值为( )A. B.1 C.2022 D.6、计算的值是( )A. B. C. D.27、下列各式从左至右是因式分解的是( )A. B.C. D.8、如果x2+kx﹣10=(x﹣5)(x+2),则k应为( )A.﹣3 B.3 C.7 D.﹣79、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )A.﹣1 B.0 C.1 D.310、下列等式中,从左到右的变形是因式分解的是( )A.a(a-3)=a2-3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+) D.a2-9=(a+3)(a-3)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x=___时,x2﹣2x+1取得最小值.2、把多项式a3﹣9ab2分解因式的结果是 _____.3、分解因式:__________.4、已知,,则________.5、因式定理:对于多项式,若,则是的一个因式,并且可以通过添减单项式从中分离出来.例如,由于,所以是的一个因式.于是.则______.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1)(2)(3).2、(1)若且,,是正整数),则.你能利用上面的结论解决这个问题吗:如果,求的值;(2)已知,,求的值.3、已知xy=5,x2y﹣xy2﹣x+y=40.(1)求x﹣y的值.(2)求x2+y2的值.4、在“整式乘法与因式分解”这一章的学习过程中,我们常采用构造几何图形的方法对代数式的变形加以说明.例如,利用图中边长分别为a,b的正方形,以及长为a,宽为b的长方形卡片若干张拼成图2(卡片间不重叠、无缝隙),可以用来解释完全平方公式:.请你解答下面的问题:(1)利用图1中的三种卡片若干张拼成图,可以解释等式:_____________;(2)利用图1中三种卡片若干张拼出一个面积为的长方形ABCD,请你分析这个长方形的长和宽.5、(1)计算:;(2)因式分解:. -参考答案-一、单选题1、D【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式逐项判断即可.【详解】解: A选项的右边不是积的形式,不是因式分解,故不符合题意;B选项的右边不是积的形式,不是因式分解,故不符合题意;C选项的右边不是积的形式,不是因式分解,故不符合题意;D选项的右边是积的形式,是因式分解,故符合题意,故选:D.【点睛】本题考查因式分解,熟知因式分解是把一个多项式化为几个整式的积的形式是解答的关键.2、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.3、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.4、C【解析】【分析】根据因式分解的定义和方法逐一判断即可.【详解】∵=﹣2x+1≠﹣2x﹣1,∴A不是因式分解,不符合题意;∵(a+b)(a﹣b)=不符合因式分解的定义,∴B不是因式分解,不符合题意;∵﹣4x+4=,符合因式分解的定义,∴C是因式分解,符合题意;∵﹣1≠,不符合因式分解的定义,∴D不是因式分解,不符合题意;故选C.【点睛】本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.5、B【解析】【分析】利用偶次方的非负性得到x>0,y>0,两式相减,可求得x-y=0,据此即可求解.【详解】解:∵x2−+2=0①,y2−+2=0②,∴x2+2=,y2+2=,∵x2+20,y2+20,∴x>0,y>0,①-②得:x2−-y2+=0,整理得:(x-y)(x+y+)=0,∵x>0,y>0,∴x+y+>0,∴x-y=0,∴2022|x−y|=20220=1,故选:B.【点睛】本题考查了因式分解的应用,非负性的应用,由偶次方的非负性得到x>0,y>0是解题的关键.6、B【解析】【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:.故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.7、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意.故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.8、A【解析】【分析】根据多项式乘以多项式把等号右边展开,即可得答案.【详解】解:(x-5)(x+2)=x2-3x-10,则k=-3,故选:A.【点睛】本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q).9、D【解析】【分析】由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.【详解】解:∵a2=b+2,b2=a+2,且a≠b,∴a2−b2=b−a,即(a+b)(a-b)=b-a,∴a+b=−1,∴a2-b2-2b+2=(a+b)(a-b)−2b+2=b−a-2b+2=-(a+b)+2=1+2=3.故选:D.【点睛】本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.10、D【解析】【分析】根据分解因式的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可.【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式.二、填空题1、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【详解】解:∵,∴当x=1时,x2﹣2x+1取得最小值.故答案为:1.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.2、a(a+3b)(a-3b)【解析】【分析】根据题意直接提取公因式a,再利用平方差公式分解因式得出答案.【详解】解:a3-9ab2=a(a2-9b2)=a(a+3b)(a-3b).故答案为:a(a+3b)(a-3b).【点睛】本题主要考查提取公因式法以及公式法分解因式,正确运用平方差公式分解因式是解题的关键.3、【解析】【分析】没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.【详解】解:,故答案为:.【点睛】本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.4、-3【解析】【分析】将多项式因式分解后,整体代入即可.【详解】解:∵,,∴,故答案为:-3.【点睛】本题主要考查了提取公因式法分解因式,代数式求值,正确提取公因式是解题关键.5、【解析】【分析】将添减单项式后分解因式即可得到答案.【详解】解: ===故答案为:.【点睛】此题考查了多项式的分解因式,正确添减单项式利用分组分解法分解因式是解题的关键.三、解答题1、 (1)(2)(3)【解析】【分析】(1)首先提取公因式3,再用平方差公式进行二次分解即可;(2)首先提取公因式x,再用完全平方公式进行二次分解即可;(3)首先用平方差公式进行分解,再用完全平方公式进行二次分解即可.(1)解:;(2)解:原式;(3)解:原式.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.2、(1);(2)【解析】【分析】(1)化为同底数幂计算即可;(2)先因式分解,再整体代换求值.【详解】解:.,解得,.(2)原式=,把,代入,则原式.【点睛】本题考查幂的运算法则及因式分解的应用,化同底及正确的因式分解是求解本题的关键.3、(1)x﹣y=10;(2)x2+y2=110.【解析】【分析】(1)利用提取公因式法对(x2y﹣xy2﹣x+y)进行因式分解,代入求值即可.(2)利用完全平方公式进行变形处理得到:x2+y2=(x﹣y)2+2xy,代入求值即可.【详解】解:(1)∵xy=5,x2y﹣xy2﹣x+y=40,∴x2y﹣xy2﹣x+y=xy(x﹣y)﹣(x﹣y)=(xy﹣1)(x﹣y)∵xy=5,∴(5﹣1)(x﹣y)=40,∴x﹣y=10.(2)x2+y2=(x﹣y)2+2xy=102+2×5=110.【点睛】本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2=(x﹣y)2+2xy.4、 (1)(2)长为,宽为.【解析】【分析】(1)根据图形,有直接求和间接求两种方法,列出等式即可;(2)根据已知等式画出相应的图形,然后根据图形写出等式即可.(1)解: (2)解:答:由图形可知,长为,宽为.【点睛】此题考查了因式分解的应用,面积与代数式恒等式的关系,熟练掌握运算法则是解本题的关键.5、(1);(2)【解析】【分析】(1)根据零指数幂和负整数指数幂计算即可;(2)先提公因式,再用平方差公式分解因式即可.【详解】解:(1),,;(2),,.【点睛】本题主要考查了实数的运算,零指数幂,负整数指数幂,提公因式法与公式法,解题的关键是掌握.
相关试卷
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习题,共19页。试卷主要包含了已知实数x,y满足等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试综合训练题,共16页。试卷主要包含了下列因式分解正确的是,把分解因式的结果是.等内容,欢迎下载使用。
这是一份数学七年级下册第十一章 因式分解综合与测试复习练习题,共17页。试卷主要包含了下列因式分解正确的是,多项式分解因式的结果是等内容,欢迎下载使用。