![2021-2022学年冀教版八年级数学下册第十八章数据的收集与整理专项训练试题(无超纲)01](http://www.enxinlong.com/img-preview/2/3/12720000/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第十八章数据的收集与整理专项训练试题(无超纲)02](http://www.enxinlong.com/img-preview/2/3/12720000/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年冀教版八年级数学下册第十八章数据的收集与整理专项训练试题(无超纲)03](http://www.enxinlong.com/img-preview/2/3/12720000/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课时练习
展开八年级数学下册第十八章数据的收集与整理专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )
A.2 B.11.1% C.18 D.
2、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )
A.2000名学生的数学成绩 B.2000
C.被抽取的50名学生的数学成绩 D.50
3、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
项目人数 级别 | 三好学生 | 优秀学生干部 | 优秀团员 |
市级 | 1 | 1 | 1 |
区级 | 3 | 2 | 2 |
校级 | 17 | 5 | 12 |
已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项 B.4项 C.5项 D.6项
4、某校为了解本校七年级500名学生的身高情况,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校七年级500名学生的身高.其中正确的说法有( )
A.1个 B.2个 C.3个 D.4个
5、2022年北京冬季奥运会将在2022年2月4日至20日在北京市和张家口市联合举行.要反应我国在最近五届冬季奥运会上获得奖牌总数的变化情况最好应选择( )
A.统计表 B.条形统计图 C.折线统计图 D.扇形统计图
6、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
7、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是( )
A.2 B.0.02 C.4 D.0.04
8、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易( )
A.一,二 B.二,一 C.一,一 D.二,二
9、下列调查中,适合采用抽样调查的是( )
A.了解全班学生的身高 B.检测“天舟三号”各零部件的质量情况
C.对乘坐高铁的乘客进行安检 D.调查某品牌电视机的使用寿命
10、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、2021年12月02日是“世界完全对称日”,人们在数字“20211202”中感受到了对称之美,下一个“世界完全对称日”将是2030年03月02日.在数字“20211202”中,数字“2”出现的频率是______.
2、为了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析,则样品容量是____________.
3、学校的全体学生的爱好情况是我们要考察的_______,称为总体;每个学生的爱好情况称为_______;所抽取的学生的爱好情况称为_______.
4、如果想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的统计图是___统计图.(填“条形”、“扇形”或“折线”)
5、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:
活动项目 | 体育运动 | 学科兴趣小组 | 音乐 | 舞蹈 | 美术 |
人数(人) | 15 | 12 | 10 | 5 | 8 |
(1)全班同学最感兴趣的课外活动项目是______;
(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.
三、解答题(5小题,每小题10分,共计50分)
1、某年母亲节,某电视台作了一个调查,结果如图所示.
(1)从这幅图中,你得到什么信息,有什么感想?
(2)就这个问题,对全班同学进行调查,看看结果怎样.
2、某音像制品店某一天的销售的情况如图:
(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?
(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?
3、体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:
次数 | |||||||
频数 | 2 | 4 | 21 | 13 | 8 | 4 | 1 |
(1)全班有多少学生?
(2)组距是多少?组数是多少?
(3)跳绳次数在范围的学生有多少?占全班学生的百分之几?
(4)画出适当的统计图表示上面的信息.
(5)你怎样评价这个班的跳绳成绩?
4、2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将
收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.
表1:小莹抽取60名男生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 4 | 6 | 37 | 8 | 5 |
表2:小静随机抽取10名学生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 2 | 1 | 3 | 3 | 1 |
表3:小新随机抽取60名学生居家减压方式统计表(单位:人)
减压方式 | A | B | C | D | E |
人数 | 6 | 5 | 26 | 13 | 10 |
根据以上材料,回答下列问题:
(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.
(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.
5、银行在某储蓄所抽样调查了50名顾客,他们的等待时间(进入银行到接受受理的时间间隔,单位:min)如下:
15 | 20 | 18 | 3 | 25 | 34 | 6 | 0 | 17 | 24 |
23 | 30 | 35 | 42 | 37 | 24 | 21 | 1 | 14 | 12 |
34 | 22 | 13 | 34 | 8 | 22 | 31 | 24 | 17 | 33 |
4 | 14 | 23 | 32 | 33 | 28 | 42 | 25 | 14 | 22 |
31 | 42 | 34 | 26 | 14 | 25 | 40 | 14 | 24 | 11 |
将数据适当分组,并绘制相应的频数直方图.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CoronaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
2、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.
【详解】
解:A、2000名学生的数学成绩是总体,故选项不合题意;
B、2000是个体的数量,故选项不合题意;
C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;
D、50是样本容量,故选项不合题意;
故选C
【点睛】
本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.
3、C
【解析】
【分析】
根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.
【详解】
解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:
项.
故选:C.
【点睛】
题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.
4、B
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是我校八年级学生期中数学考试成绩,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:①本次调查方式属于抽样调查.故①正确;
②每个学生的身高情况是个体.故②错误;
③100名学生的身高情况是总体的一个样本.故③错误;
④总体是该校七年级500名学生的身高.故④正确;
故正确的说法有2个.
故选:B.
【点睛】
本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
5、C
【解析】
【分析】
可根据扇形统计图、折线统计图、条形统计图各自的特点,分析得结论
【详解】
解:因为折线统计图能直观的反应数量的变化情况,
所以要反应我国在最近五届冬季奥运会上获得奖牌总数的变化情况应选择折线统计图.
故选:C.
【点睛】
本题考查了根据统计图的特点,选择统计图,解题的关键是掌握各统计图的特点,扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
6、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
7、D
【解析】
【分析】
先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.
【详解】
解:该班级学生这次体能评定为“较差”的频数是:
则该班级学生这次体能评定为“较差”的频率是:
故选D
【点睛】
本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.
8、A
【解析】
【分析】
根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
【详解】
解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
故选A.
【点睛】
条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.
9、D
【解析】
【分析】
对于精确度要求高的调查,事关重大的调查往往选用普查.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.
【详解】
解:A、对了解全班学生的身高,必须普查,不符合题意;
B、检测“天舟三号”各零部件的质量情况,必须普查,不符合题意;
C、对乘坐高铁的乘客进行安检,必须普查,不符合题意;
D、调查调查某品牌电视机的使用寿命,适合抽样调查,符合题意;
故选:D.
【点睛】
本题考查的是普查和抽样调查的选择,解题的关键是掌握调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
10、C
【解析】
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
二、填空题
1、##0.5
【解析】
【分析】
根据数字“20211202”中,数字“2”出现了4次,即可求数字“2”出现的频率.
【详解】
解:在数字“20211202”中,数字“2”出现了4次,
∴数字“2”出现的频率==.
故答案为:.
【点睛】
此题考查了频率,掌握频率=频数÷样本容量是解答此题的关键.
2、1600
【解析】
【分析】
根据样本容量则是指样本中个体的数目,可得答案.
【详解】
解:为了解某市参加中考的32000名学生的体重情况,抽查了其中1600名学生的体重进行统计分析.样本容量是1600,
故答案为:1600.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
3、 全体对象 个体 样本
【解析】
略
4、折线
【解析】
【分析】
根据条形统计图,折线统计图和扇形统计图的特点进行判断即可.
【详解】
解:想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的的统计图的折线统计图,
故答案为:折线.
【点睛】
本题主要考查了条形统计图,折线统计图和扇形统计图的特点,解题的关键在于能够熟练掌握:扇形统计图表示的是部分在总体中所占的百分比,但一般不能够从图中得到具体的数据;折线统计图表示的事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
5、 体育运动 10
【解析】
【分析】
(1)从统计表中直接通过比较即可得到.
(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.
【详解】
解:从统计表分析人数可得到结论.由表可得:
(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;
(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=.
故答案为:(1)体育运动;(2)10,
【点睛】
本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.
三、解答题
1、(1)答案不唯一.例如,在这次调查中,有较多的人知道母亲喜欢吃的菜,对母亲比较了解,但还有一部分人在这个方面做得不够;感想:是大部分人对于母亲还是很关心的.(2)见解析.
【解析】
【分析】
(1)根据图获取相应信息即可;
(2)分别统计出“不知道”、“没爱吃的”、“知道”各部分的人数,再进行分析.
【详解】
解:(1)根据图形可知,不知道母亲最爱吃的菜的人数占参加调查人数的;
知道母亲最爱吃的菜的人数占参加调查的人数的;
此次是在8个城市中有1095人参加调查;
由此得出:在这次调查中,有较多的人知道母亲喜欢吃的菜,对母亲比较了解,但还有一部分人在这个方面做得不够;
感想:大部分人对于母亲还是很关心的.
(2)对全班同学进行调查,分别统计出“不知道”、“没爱吃的”、“知道”各部分的人数,再对数据具体分析.
【点睛】
本题考查了扇形统计图,解题的关键是了解图形中各部分所代表的意义.
2、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为;(2)应将0作为纵轴上销售量的起始值.
【解析】
【分析】
(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.
(2)根据条形统计图的特点回答即可.
【详解】
解:(1)从条形统计图看,
民歌类唱片销售量为:80(张),
流行歌曲唱片销售量为:120(张),
∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;
(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
3、(1)53人;(2)20,7;(3)34,约64%;(4)见解析;(5)见解析
【解析】
【分析】
(1)根据频数分布表的数据,把所有频数相加即可得到全班学生总人数;
(2)根据频数分布表,可知一共是7个小组,并且每个小组的组距是20,即可求解;
(3)根据频数分布表得到范围内学生人数,利用“部分所占百分比=部分÷总体”计算即可;
(4)根据频数分布表的数据,用跳绳次数作为横轴,学生人数作为纵轴,画出频数分布直方图即可;
(5)根据频数分布表的数据大小特征,进行判断即可.
【详解】
解:(1)由题可得,2+4+21+13+8+4+1=53(名),
∴全班有53名学生;
(2)由频数分布表可得,组距为20,组数为7;
(3)21+13=34(名),,
∴跳绳次数在范围的学生有34名,约占全班学生的64%;
(4)用频数分布直方图表示数据如下;
(5)由表和图可以看出,跳绳次数大部分落在100次到160次之间,其他区域较少,次数在100次到120次的同学个数最多,有21个,而次数在,,,范围内的同学较少,总共只有11个.
【点睛】
本题主要考查了频数分布表,熟练掌握基本知识及直方图的作图方法是解题的关键.
4、(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差;(2)260.
【解析】
【分析】
(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行判断;
(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.
【详解】
解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,
小莹同学调查的只是男生,不具有代表性,
小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.
(2)(人,
答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.
【点睛】
本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.
5、见解析
【解析】
【分析】
根据数据,确定组距,进而确定组数,确定每个组,然后作出频数分布表,进而作出频数直方图.
【详解】
分组方法不唯一,可按如下方法分成5组:
分组 | 0~10 | 11~20 | 21~30 | 31~40 | 41~50 |
频数 | 6 | 13 | 16 | 12 | 3 |
频数直方图如下:
【点睛】
本题考查频数分布表,频数直方图的作法,掌握作图步骤是解答本题的关键.
数学八年级下册第十八章 数据的收集与整理综合与测试同步练习题: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试同步练习题,共19页。
初中数学第十八章 数据的收集与整理综合与测试课后作业题: 这是一份初中数学第十八章 数据的收集与整理综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的个数是个.等内容,欢迎下载使用。
2021学年第十八章 数据的收集与整理综合与测试练习: 这是一份2021学年第十八章 数据的收集与整理综合与测试练习,共18页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。