![2022年最新精品解析冀教版九年级数学下册第三十章二次函数专项攻克试题(含详解)第1页](http://www.enxinlong.com/img-preview/2/3/12720706/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第三十章二次函数专项攻克试题(含详解)第2页](http://www.enxinlong.com/img-preview/2/3/12720706/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析冀教版九年级数学下册第三十章二次函数专项攻克试题(含详解)第3页](http://www.enxinlong.com/img-preview/2/3/12720706/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学九年级下册第30章 二次函数综合与测试课后作业题
展开
这是一份数学九年级下册第30章 二次函数综合与测试课后作业题,共24页。试卷主要包含了已知点等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )A.秒 B.秒 C.秒 D.1秒2、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是( )A. B.C. D.3、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )A.米 B.10米 C.米 D.12米4、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )A.① B.② C.③ D.②③5、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )A. B. C. D.6、已知二次函数的图象如图所示,根据图中提供的信息,可求得使成立的x的取值范围是( )A. B. C. D.或7、二次函数的图像如图所示,那么点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).A. B. C.或 D.9、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为( )A.2 B.3 C.3 D.D310、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.2、将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为 _____.3、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.4、当x≥m时,两个函数y1=﹣(x﹣4)2+2和y2=﹣(x﹣3)2+1的函数值都随着x的增大而减小,则m的最小值为_____.5、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图像经过点,,.(1)求二次函数的表达式;(2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.2、已知一抛物线的顶点为(2,4),图象过点(1,3).(1)求抛物线的解析式;(2)动点P(x,5)能否在抛物线上?请说明理由;(3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.3、已知二次函数的图象经过点.(1)求二次函数的表达式;(2)求二次函数的图象与轴的交点坐标.4、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:x…0123…y…00…(1)求该二次函数的表达式;(2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.5、如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y().(1)求y与x的函数关系式;(2)求所围矩形苗圃ABCD的面积最大值; -参考答案-一、单选题1、A【解析】【分析】根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.【详解】解:由题意得,当h=3时,,解得,∴球不低于3米的持续时间是1-0.6=0.4(秒),故选:A.【点睛】此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.2、B【解析】【分析】由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.【详解】解:将抛物线先向上平移1个单位,则函数解析式变为 再将向左平移2个单位,则函数解析式变为,故选:B.【点睛】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.3、B【解析】【分析】以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.【详解】以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,∵O点到水面AB的距离为4米,∴A、B点的纵坐标为-4,∵水面AB宽为20米,∴A(-10,-4),B(10,-4),将A代入y=ax2,-4=100a,∴,∴,∵水位上升3米就达到警戒水位CD,∴C点的纵坐标为-1,∴∴x=±5,∴CD=10,故选:B.【点睛】本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.4、B【解析】【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上, 当b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;当b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,∴a有两个相同的值,∴点M的个数为1,故②正确;当b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B.【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.5、C【解析】【分析】由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.【详解】解:,抛物线开口向上,对称轴为,当时,随的增大而减小,在时,随的增大而减小,,解得,故选:C.【点睛】本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.6、D【解析】【分析】根据函数图象写出y=1对应的自变量x的值,再根据判断范围即可.【详解】由图可知,使得时使成立的x的取值范围是或故选:D.【点睛】本题考查了二次函数与不等式,准确识图是解题的关键.7、C【解析】【分析】根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.【详解】由函数图像可得:∵抛物线开口向上,∴a>0,又∵对称轴在y轴右侧,∴,∴b<0,又∵图象与y轴交于负半轴,∴c<0,∴∴在第三象限故选:C【点睛】考查二次函数y=ax2+bx+c系数符号的确定.根据对称轴的位置、开口方向、与y轴的交点的位置判断出a、b、c的符号是解题的关键.8、A【解析】【分析】先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.【详解】解:∵当x1=1、x2=3时,y1=y2,∴点A与点B为抛物线上的对称点,∴,∴b=-4;∵对于任意实数x1、x2都有y1+y2≥2,∴二次函数y=x2-4x+n的最小值大于或等于1,即,∴c≥5.故选:A.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.9、B【解析】【分析】先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.【详解】∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),∴y=a(x+2)2+2,∵与y轴交于点A(0,3),∴3=a(0+2)2+2,解得a= ∴原抛物线的解析式为:y=(x+2)2+2,∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),∴平移后的抛物线为y=(x﹣1)2﹣1,∴当x=0时,y=,∴A′的坐标为(0,),∴AA′的长度为:3﹣()=3.故选:B.【点睛】本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.10、B【解析】【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1,m),(x2,m),由图象可知此时m>-2因此④正确的,综上所述,正确的有2个,故选:B.【点睛】考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.二、填空题1、x=-5或x=0##或【解析】【分析】根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.【详解】解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),∴ax2+bx+4=0的解为:x=-4或x=1,则在关于x的方程a(x+1)2+b(x+1)=-4中,x+1=-4或x+1=1,解得:x=-5或x=0,即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,故答案为:x=-5或x=0.【点睛】本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.2、y=﹣2(x﹣1)2+3【解析】【分析】按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.【详解】解:将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为:y=﹣2(x+2﹣3)2+5﹣2,即y=﹣2(x﹣1)2+3.故答案为:y=﹣2(x﹣1)2+3.【点睛】此题考查了抛物线的平移规律:左加右减,上加下减,熟记规律是正确解题的关键.3、2.5.【解析】【分析】根据二次函数的对称轴公式直接计算即可.【详解】解:∵的对称轴为(min),故:最佳加工时间为2.5min,故答案为:2.5.【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.4、4【解析】【分析】先确定两个函数的开口方向和对称轴,再得出符合条件的x的取值范围,从而得到m的最小值.【详解】解:函数y1=﹣(x﹣4)2+2开口向下,对称轴为直线x=4,函数y2=﹣(x﹣3)2+1开口向下,对称轴为直线x=3,当函数值都随着x的增大而减小,则x≥4,即m的最小值为4,故答案为:4.【点睛】本题考查了二次函数的图像和性质,解题的关键是掌握二次函数的基本性质.5、75【解析】【分析】根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.【详解】解:∵正方形OABC的边长为n,点A1,A2,…,An-1为OA的n等分点,点B1,B2,…,Bn-1为CB的n等分点,∴OA25= •n=25,A25B25=n,∵B25C25=8C25A25,∴C25(25,),∵点C25在上,∴,解得n=75.故答案为:75.【点睛】本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.三、解答题1、 (1)(2)18(3)1或5【解析】【分析】(1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;(2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;(3)观察抛物线的图像可直接得到结果.(1)解:(1)设二次函数的表达式为(,,为常数,),由题意知,该函数图象经过点,,,得,解得,∴二次函数的表达式为.(2)解:∵当y=0时,解得:x1=1,x2=5∴点A坐标为(1,0)、点B坐标为(5,0);当x=0时,y=-5,∴点C坐标为(0,-5);把化为y=-(x-3)2+4∴点P坐标为(3,4);由题意可画图如下: ∴S四边形ACBP=S△ABP+S△ABC==18,故答案是:18;(3)由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.故:m=1或.【点睛】本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.2、 (1)(2)不在,见解析(3)y1<y2,见解析【解析】【分析】(1)根据已知条件设抛物线的解析式为顶点式,把点(1,3)的坐标代入所设的解析式中即可求得a,从而可求得函数解析式;(2)把点P的纵坐标代入抛物线的解析式中,得到关于x的二元一次方程,若方程有解,则点P在抛物线,否则不在抛物线上;(3)抛物线的对称轴为直线x=2,根据抛物线的增减性质即可比较大小.(1)设抛物线的解析式为把点(1,3)的坐标代入中,得a+4=3∴ 即抛物线的解析式为;(2)动点P(x,5)不在抛物线上理由如下:在中,当y=5时,得即此方程无解故点P不在抛物线上;(3)y1<y2理由如下:抛物线的对称轴为直线x=2∵二次项系数−1<0,且 ∴函数值随自变量的增大而增大即y1<y2【点睛】本题考查了待定系数法求二次函数的解析式,二次函数与一元二次方程的关系,二次函数的图象与性质等知识,熟练掌握这些知识是关键,属于二次函数的基础题目.3、 (1)y=x 2+ x﹣;(2)(0,﹣).【解析】【分析】(1)利用待定系数法,把代入函数解析式即可求;(2)令x=0,求得y的值即可得出结论.(1)解:∵二次函数y=a(x+1)2﹣2的图象经过点(﹣5,6),∴a(﹣5+1)2﹣2=6.解得:a=.∴二次函数的表达式为:y=(x+1)2﹣2,即y=x 2+ x﹣;(2)解:令x=0,则y=×(0+1)2﹣2=﹣,∴二次函数的图象与y轴的交点坐标为(0,﹣).【点睛】本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.4、 (1)二次函数的表达式为: ;(2).【解析】【分析】(1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;(2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.(1)解:观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,把代入得,,∴,∴,即 ;(2)解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同, 设二次函数的表达式为,在y轴上且在函数图象上,将其代入函数表达式为:,解得:,∴关于y轴对称的图象所对应的函数表达式为,故答案为:.【点睛】本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.5、 (1)y=﹣2x2+18x(2)m2【解析】【分析】(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y(),则,根据矩形的面积公式求解即可;(2)根据顶点坐标公式计算即可求解(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y(),则,根据题意得:y=x(18﹣2x)=﹣2x2+18x;(2)二次函数y=﹣2x2+18x(0<x<9),∵a=﹣2<0,∴二次函数图象开口向下,且当x=﹣=时,y取得最大值,最大值为y=×(18﹣2×)=(m2);【点睛】本题考查了一元二次函数的应用,用代数式表示出是解题的关键.
相关试卷
这是一份2021学年第30章 二次函数综合与测试同步训练题,共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试课时训练,共31页。试卷主要包含了抛物线,,的图象开口最大的是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。