![2022年最新强化训练冀教版九年级数学下册第三十章二次函数专题练习试题(含答案解析)第1页](http://www.enxinlong.com/img-preview/2/3/12720739/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版九年级数学下册第三十章二次函数专题练习试题(含答案解析)第2页](http://www.enxinlong.com/img-preview/2/3/12720739/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版九年级数学下册第三十章二次函数专题练习试题(含答案解析)第3页](http://www.enxinlong.com/img-preview/2/3/12720739/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试复习练习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试复习练习题,共26页。试卷主要包含了抛物线y=﹣2,抛物线的对称轴是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为( )A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+12、抛物线y=x2+4x+5的顶点坐标是( )A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)3、对于抛物线下列说法正确的是( )A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点4、已知二次函数的图象如图所示,根据图中提供的信息,可求得使成立的x的取值范围是( )A. B. C. D.或5、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A.14 B.11 C.6 D.36、抛物线y=﹣2(x﹣3)2﹣4的对称轴是( )A.直线x=3 B.直线x=﹣3 C.直线x=4 D.直线x=﹣47、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A. B. C. D.8、二次函数的图象如图所示,则下列结论正确的是( )A.,, B.,, C.,, D.,,9、抛物线的对称轴是( )A.直线 B.直线 C.直线 D.直线10、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.2、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为万吨,如果2019年至2021年蔬菜产量的年平均增长率为,那么关于的函数解析式为_________.3、抛物线y=x2+2x+的对称轴是直线______.4、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣x2+4的图像上,那么m、n的大小关系是:m_____n.(填“>”、“=”或“<”)5、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为 ____________.三、解答题(5小题,每小题10分,共计50分)1、 “互联网+”时代,网上购物备受消费者青睐,某网店专售一款电子玩具,其成本为每件100元,当售价为每件160元时,每月可销售200件.为了吸引更多买家,该网店采取降价措施,据市场调查反映:销售单价每降低1元,则每月可多销售5件,设每件电子玩具的售价为x元(x为正整数),每月销售量为y件.(1)直接写出y与x之间的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主决定每月从利润中捐出500元资助贫困学生,为了保证捐款后每月利润不低于11500元,且让消费者得到最大的实惠,该如何确定该电子玩具的价格?2、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.(1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;(2)若每日销售利润达到900元,售价为多少元?(3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?3、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)若 ,求点P的坐标;(3)连接AC,求 PAC面积的最大值及此时点P的坐标.4、已知二次函数的图象经过点,对称轴是经过且平行于轴的直线.(1)求,的值,(2)如图,一次函数的图象经过点,与轴相交于点,与二次函数的图象相交于另一点,若点与点关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出时,的取值范围.5、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.(1)求抛物线的表达式;(2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;(3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来. -参考答案-一、单选题1、D【解析】【分析】由题意知平移后的函数关系式为,进行整理即可.【详解】解:由题意知平移后的函数关系式为:,故选D.【点睛】本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.2、D【解析】【分析】利用顶点公式(﹣,),进行解题.【详解】解:∵抛物线y=x2+4x+5∴x=﹣=﹣=﹣2,y==1∴顶点为(﹣2,1)故选:D.【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).3、D【解析】【分析】根据二次函数的性质对各选项分析判断即可得解.【详解】解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,∴A选项不正确;由抛物线,可知其最小值为-2,∴B选项不正确;由抛物线,可知其顶点坐标,∴C选项不正确;在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;故选:D.【点睛】本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.4、D【解析】【分析】根据函数图象写出y=1对应的自变量x的值,再根据判断范围即可.【详解】由图可知,使得时使成立的x的取值范围是或故选:D.【点睛】本题考查了二次函数与不等式,准确识图是解题的关键.5、B【解析】【分析】首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.【详解】解:,抛物线顶点的坐标为,,点的横坐标为,把代入,得到,,.故选:B.【点睛】本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.6、A【解析】【分析】直接利用抛物线y=﹣2(x﹣3)2﹣4,求得对称轴方程为:x=3.【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.【点睛】本题考查了二次函数的性质与图象,解题的关键是掌握:二次函数的顶点式与对称轴的关系.7、B【解析】【分析】直接利用图象设出抛物线解析式,进而得出答案.【详解】∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a,解得:a=,∴此抛物线钢拱的函数表达式为,故选:B.【点睛】本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.8、D【解析】【分析】首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.【详解】解:抛物线开口向上,,对称轴在轴右侧,与异号,,抛物线与轴交于正半轴,,故选:.【点睛】此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,①二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口.②一次项系数和二次项系数共同决定对称轴的位置.当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)③.常数项决定抛物线与轴交点. 抛物线与轴交于.9、B【解析】【分析】由抛物线解析式的顶点式即可求得抛物线的对称轴.【详解】抛物线的对称轴是直线,故选:B.【点睛】本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h.10、B【解析】【分析】由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.【详解】解:将抛物线先向上平移1个单位,则函数解析式变为 再将向左平移2个单位,则函数解析式变为,故选:B.【点睛】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.二、填空题1、【解析】【分析】函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.【详解】解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大∴自变量x的取值范围是故答案为:.【点睛】本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.2、【解析】【分析】根据题意可得2020年的蔬菜产量为,2021年的蔬菜产量为,2021年的蔬菜产量为y万吨,由此即可得.【详解】解:根据题意可得:2020年的蔬菜产量为,2021年的蔬菜产量为,∴,故答案为: .【点睛】题目主要考查二次函数的应用,理解题意,熟练掌握增长率问题是解题关键.3、x=﹣1【解析】【分析】抛物线的对称轴方程为: 利用公式直接计算即可.【详解】解:抛物线y=x2+2x+的对称轴是直线: 故答案为:【点睛】本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.4、【解析】【分析】先利用二次函数的性质得到抛物线的对称轴为轴,然后根据二次函数的性质解决问题.【详解】解:二次函数可知,抛物线开口向下,抛物线的对称轴为轴,所以当时,随的增大而增大,,,故答案为:.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.5、y=x2-4x+3【解析】【分析】过点C作CH⊥AB于点H,然后利用垂径定理求出CH、AH和BH的长度,进而得到点A和点B的坐标,再将A、B的坐标代入函数解析式求得b与c,最后求得二次函数的解析式.【详解】解:过点C作CH⊥AB于点H,则AH=BH,∵C(2,),∴CH=,∵半径为2,∴AH=BH==1,∵A(1,0),B(3,0),∴二次函数的解析式为y=(x﹣1)(x﹣3)=x2﹣4x+3,故答案为:y=x2-4x+3.【点睛】本题考查了圆的垂径定理、二次函数的解析式,解题的关键是过点C作CH⊥AB于点H,利用垂径定理求出点A和点B的坐标.三、解答题1、 (1)y= -5x+1000(2)当销售单价降低10元时,每月获得的利润最大,最大利润是12500元;(3)140元【解析】【分析】(1)根据总件数=基础件数+增加件数=200+5(160-x),列出关系式即可;(2)根据总利润=单件利润×销售件数,构造二次函数,配方法求最值即可;(3)先根据题意,构造出符合题意的不等式,把不等式转化为一元二次方程,求得两个根,根据抛物线的性质,确定不等式的解集,结合题意,确定价格即可.(1)∵售价为每件160元时,每月可销售200件,销售单价每降低1元,则每月可多销售5件,∴y=200+5(160-x)=-5x+1000.(2)根据题意,得w=(x-100)(-5x+1000)= ,∵抛物线开口向下,∴当x=150时,w有最大值,且为12500,此时应降价160-150=10元,故当销售单价降低10元时,每月获得的利润最大,最大利润是12500元.(3)根据题意,得-500≥11500,当-500=11500时,解得,,∵抛物线w= 开口向下,∴-500≥11500的解集为140≤x≤160,∴让消费者得到最大的实惠,该如何确定该电子玩具的价格x=140元.【点睛】本题考查了销售数量与价格的关系,二次函数解决利润问题,二次函数图像与不等式解集的关系,一元二次方程的解法,熟练掌握二次函数的构造方法和性质是解题的关键.2、 (1)w=-3x2+360x-9600;(2)若每日销售利润达到900元,售价为50元;(3)当销售价为55元时,可以获得最大利润,为1125元.【解析】【分析】(1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;(2)根据(1)的关系式列出一元二次方程即可;(3)根据题中所给的自变量的取值得到二次的最值问题即可.(1)解:w=(x-40)[105-3(x-45)]=(x-40)(-3x+240)=-3x2+360x-9600,答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;(2)解:由题意得,w=-3x2+360x-9600=900,解得:x1=50,x2=70>55(舍),答:若每日销售利润达到900元,售价为50元;(3)解:w=-3x2+360x-9600=-3(x-60)2+1200,∵a=-3<0,∴抛物线开口向下.又∵对称轴为x=60,∴当x<60,w随x的增大而增大,由于50≤x≤55,∴当x=55时,w的最大值为1125元.∴当销售价为55元时,可以获得最大利润,为1125元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.3、 (1);(2)P(,﹣2);(3)面积的最大值为8,此时点P(﹣2,﹣5).【解析】【分析】(1)由题意及抛物线解析式可得:,而,得出,,即可确定点A、B、C的坐标,利用交点式代入即可确定解析式;(2)根据(1)中解析式可得抛物线的对称轴为,当时,点P、C的纵坐标相同,横坐标之和除以2为对称抽,即可求解;(3)过点P作轴交AC于点H,设直线AC的解析式为:,将点、代入确定直线解析式,结合图象可得,与底为同底,高的和为OA长度,代入三角形面积得出,据此即可得出面积的最大值及此时点P的坐标.(1)解:抛物线,则,∴,∵,∴,,∴点A、B、C的坐标分别为、、,∴,将代入可得,解得:,∴,故抛物线的表达式为:;(2)解:,其中:,,,∴抛物线的对称轴为,∵,∴点P、C的纵坐标相同,∴根据函数的对称性得点;(3)解:过点P作轴交AC于点H,设直线AC的解析式为:,将点、代入可得:,解得:,直线AC的解析式为:,∴,∴,,,,∵,∴当时,,此时面积最大,当时,,∴,答:的面积最大为8,此时点.【点睛】题目主要考查利用待定系数法确定一次函数与二次函数解析式,二次函数图象的基本性质等,理解题意,结合图象作出相应辅助线,综合运用二次函数基本性质是解题关键.4、 (1)(2)(3)或5、 (1)(2)DQ的最大值为,(3)N点坐标为或或或,见解析【解析】【分析】(1)根据在抛物线上,可得,再由,可得,即可求解;(2)过点Q作轴交直线AC于点P,令 ,可得,从而得到,进而得到,,再求出直线AC解析式,然后设,则,可得,即可求解;(3)先求出平移后的抛物线为.然后分四种情况讨论,即可求解.(1)解:∵在抛物线上,∴,∵∴,将代入中得,,∴抛物线的表达式为:;(2)解:过点Q作轴交直线AC于点P,如图:当 时,,解得: ,∴,即OC=4,∵OA=4,∴,∴,在Rt△PQD中,,由、得直线AC解析式为:,设,则,∵∴∴∴当时,DQ的最大值为,此时.(3)解:存在,N点坐标为或或或.设平移后满足条件的抛物线为;∵抛物线过点,∴∴抛物线沿射线AB的方向平移,设抛物线沿直线平移,∴抛物线与抛物线的的顶点均在直线上;∴由直线过点得,,解得;由直线过得,,则,又∵,∴,∴,或(因为对称轴在不满足沿射线AB平移,舍去)∴,,平移后的抛物线为.∴对称轴为y轴,即点M在y轴上,当四边形ABNM为菱形,点N在x轴的上方时, ∵,.∴;当四边形ABN1M1为菱形,点N在x轴的下方时,∵,.∴;当四边形AB M2 N2为菱形时,点N2在x轴上,则A M2垂直平分B N2,∴O N2=OB,∴点N2;当四边形A M3B N3为菱形,A M3=B M3,.设O M3=a,则B M3=A M3=4-a,∴ ,解得: ,∴ ,∴点N3;综上所述,N点坐标为或或或.【点睛】本题主要考查了二次函数的图象和性质,与四边形的综合题,抛物线的平移,熟练掌握二次函数的图象和性质,菱形的性质是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题,共31页。试卷主要包含了下列函数中,二次函数是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试练习,共25页。试卷主要包含了若二次函数y=a,二次函数的最大值是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试复习练习题,共29页。试卷主要包含了抛物线的对称轴是,二次函数y=ax2﹣4ax+c,同一直角坐标系中,函数和等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)