初中数学第30章 二次函数综合与测试随堂练习题
展开
这是一份初中数学第30章 二次函数综合与测试随堂练习题,共30页。试卷主要包含了已知平面直角坐标系中有点A,抛物线y=﹣2等内容,欢迎下载使用。
九年级数学下册第三十章二次函数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若点,都在二次函数的图象上,且,则的取值范围是( )A. B. C. D.2、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )A. B.C. D.3、一次函数与二次函数的图象交点( )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点4、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是( )A.4 B.2 C.6 D.35、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )A.①④ B.③⑤ C.②⑤ D.③④6、若二次函数与轴的一个交点为,则代数式的值为( )A. B. C. D.7、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )A. B. C. D.8、抛物线y=﹣2(x﹣3)2﹣4的对称轴是( )A.直线x=3 B.直线x=﹣3 C.直线x=4 D.直线x=﹣49、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、已知二次函数y=ax2+bx+c的图象如图所示,则( )A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将抛物线向右平移4个单位,所得到的抛物线的函数解析式是________.2、二次函数 y  2x21 的图象开口方向______.(填“向上”或“向下”)3、已知抛物线经过点.若点在该抛物线上,且,则n的取值范围为______.4、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.5、已知抛物线与轴相交于,两点.若线段的长不小于2,则代数式的最小值为_______.三、解答题(5小题,每小题10分,共计50分)1、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣2﹣101234…y…m03n305…其中,m= ,n= ;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;(3)观察函数图像:①写出该函数的一条性质 ;②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)2、如图,Rt中,.点P从点A出发,沿射线方向以每秒1个单位长度的速度向终点B运动,当点P不与点A重合时,将线段绕点P旋转使(点在点P右侧),过点作交射线于点M,设点P运动的时间为t(秒).(1)的长为___________(用含t的代数式表示)(2)当落在的角平分线上时,求此时t的值.(3)设与重叠部分图形的面积为S(平方单位),求S关于t的函数关系式.并求当t为何值时,S有最大值,最大值为多少?3、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;①求出当4≤x≤8时的函数关系式;②求出当8<x≤28时的函数关系式.(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;(3)求出年利润的最大值.4、二次函数(、、是常数,)的自变量和函数值部分对应值如下表:…-3-2-101……8545…根据以上列表,回答下列问题:(1)直接写出、的值;(2)求此二次函数的解析式.5、在平面直角坐标系中,抛物线交轴于点,点,(点在点的左侧),点是抛物线上一点.(1)若,时,用含的式子表示;(2)若,,,的外接圆为,求点的坐标和弧的长;(3)在(1)的条件下,若有最小值,求此时的抛物线解折式 -参考答案-一、单选题1、D【解析】【分析】先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.【详解】抛物线的对称轴为直线,∵,,当点和在直线的右侧,则,解得,当点和在直线的两侧,则,解得,综上所述,的范围为.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.2、B【解析】【分析】根据增长率问题的计算公式解答.【详解】解:第2年的销售量为,第3年的销售量为,故选:B.【点睛】此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.3、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根与的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.4、C【解析】【分析】将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.【详解】解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2∴函数图象一定经过点C(2,-2)点C关于x轴对称的点的坐标为(2,2),连接,如图,∵∴故选:C【点睛】本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.5、D【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;②由抛物线的开口方向向下可推出a<0;因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;③由图可知函数经过(-1,0),∴当,,故③正确;④对称轴为x=,∴,故④正确;⑤当y=2时,,故⑤错误;∴正确的是③④故选:D【点睛】二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.6、D【解析】【分析】把代入即可求出,则,进而可求出代数式的值.【详解】解:二次函数与轴的一个交点为,时,,,,故选:D.【点睛】本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.7、B【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),故当时,,即,故B错误,符合题意;C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;故选:B.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.8、A【解析】【分析】直接利用抛物线y=﹣2(x﹣3)2﹣4,求得对称轴方程为:x=3.【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.【点睛】本题考查了二次函数的性质与图象,解题的关键是掌握:二次函数的顶点式与对称轴的关系.9、D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-<0,得b<0.∴ 所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.故选:D.【点睛】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.10、B【解析】【分析】根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.【详解】解:∵抛物线的开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴>0,∴b<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∵抛物线与x轴有一个交点,∴Δ=0,故选:B.【点睛】本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.二、填空题1、y=(x-4)2【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y=x2的顶点坐标为(0,0),向右平移4个单位后的图象的顶点坐标为(4,0),所以,所得图象的解析式为y=(x-4)2,故答案为:y=(x-4)2.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.2、向上【解析】【分析】根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.【详解】∵a=2>0,∴二次函数y=2x2+1图象的开口方向是向上,故答案为:向上.【点睛】本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.3、【解析】【分析】将点代入求出抛物线的解析式,再求出对称轴为直线,开口向上,自变量离对称轴越远,因变量越大即可求解.【详解】解:将代入中得到:,解得,∴抛物线的对称轴为直线,且开口向上,根据“自变量离对称轴越远,其对应的因变量越大”可知,当时,对应的最大为:,当时,对应的最小为:,故n的取值范围为:,故答案为:.【点睛】本题考查二次函数的图像及性质,点在抛物线上,将点的坐标代入即可求解.4、2.5.【解析】【分析】根据二次函数的对称轴公式直接计算即可.【详解】解:∵的对称轴为(min),故:最佳加工时间为2.5min,故答案为:2.5.【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.5、-1【解析】【分析】将抛物线解析式配方,求出顶点坐标为(1,-2)在第四象限,再根据抛物线与x轴有两个交点可得,设为A,B两点的横坐标,然后根据已知,求出的取值范围,再设,配方代入求解即可.【详解】解:== ∴抛物线顶点坐标为(1,-2),在第四象限,又抛物线与轴相交于A,两点.∴抛物线开口向上,即 设为A,B两点的横坐标,∴ ∵线段的长不小于2,∴ ∴ ∴∴∴ 解得, 设当时,有最小值,最小值为:故答案为:-1【点睛】本题主要考查发二次函数的图象与性质,熟记完全平方公式和根与系数的关系是解题的关键.三、解答题1、 (1)5,4(2)见解析(3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3【解析】【分析】(1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;(2)描点、连线画出图象即可;(3)①根据图象即可求得;②根据图象即可求得.【小题1】解:把x=-2代入y=|x2-2x-3|,得y=5,∴m=5,把x=1代入y=|x2-2x-3|,得y=4,∴n=4,故答案为:5,4;【小题2】如图所示;【小题3】①函数的性质:图象具有对称性,对称轴是直线x=1;故答案为:图象具有对称性,对称轴是直线x=1;②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.【点睛】本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.2、 (1)(2)(3),当时,S有最大值【解析】【分析】(1)先利用勾股定理求出,然后证明,得到,即,则,,即可得到;(2)延长交BC于D,由,得到,,则再由在∠ABC的角平分线上,,,得到,则,由此求解即可;(3)先求出当点正好落在BC上时,,然后讨论当△ABC与重叠部分即为,然后求出当点M恰好与B重合时,,讨论当时,如图3所示,△ABC与重叠部分即为四边形PMTS,当时,如图4所示,,△ABC与重叠部分即为△BPS,由此求解即可.(1)解:由旋转的性质可得,∵在Rt△ABC,∠ACB=90°,AC=4,BC=3,∴,∵,,∴,,∴,∴,即,∴,,∴;(2)解:如图所示,延长交BC于D,∵∠ACB=90°,∴AC⊥BC,∵,∴,,∴∵在∠ABC的角平分线上,,,∴,∴,∴,∴,又∵,∴,解得;(3)解:如图2所示,当点正好落在BC上时,∴,∵,∴,∴,即,∴,又∵,∴,解得,当,如图1所示,△ABC与重叠部分即为,∴此时;当点M恰好与B重合时,此时,∴,解得,当时,如图3所示,△ABC与重叠部分即为四边形PMTS,∴,同理可证,∴,即,,∴,∴,∵, ∴,∴即,∴,∴,∴;当时,如图4所示,,△ABC与重叠部分即为△BPS,同理可证,∴,即,∴,,∴,∴综上所述,∴,∴由二次函数的性质可知,∴当时,S有最大值.【点睛】本题主要考查了相似三角形的性质与判定,勾股定理,角平分线的性质,熟知相关知识是解题的关键.3、 (1)①y=;②y=-x+28(2)(3)年利润最大为114元【解析】【分析】(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入计算即可;②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,计算即可;(2)分4≤x≤8、8<x≤28两种情况,利润w(万元)与x(元/件)之间的函数关系式;(3)分4≤x≤8、8<x≤28两种情况,分别求出w的最大值,进而求解;(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入,得k=4×40=160,∴y=②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,得解得∴y=-x +28(2)当4≤x≤8时,w=当8<x≤28时,w=(x-4)y=(x-4)(-x+28)=-x2+32x-112=-(x-16)2+114综上可知,w(万元)与x(元/件)之间的函数关系式为(3)当4≤x≤8时,∵-640<0,∴w随x增大而增大,∴当x=8时,w有最大值,为 当8<x≤28时,∵-1<0∴当x=16时,w有最大值,为114∵80<114∴当每件的销售价格定为16元时,年利润最大为114元【点睛】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.4、 (1)c=5,m=8(2)y=x²+2x+5【解析】【分析】(1)根据抛物线的对称性及表格中函数值x相等可求出对称轴进而求出m的值;根据自变量x=0可求出抛物线与y轴的交点,即可求得c的值;(2)根据对称轴为x=-1,得到抛物线顶点为(-1,4),设顶点式为y=a(x+1)2+4,代入其中一个点求出a的值即可求出二次函数解析式.(1)解:根据图表可知:二次函数的图象过点(0,5),(-2,5),∴二次函数的对称轴为:直线,∵直线x=-3到对称轴x=-1的距离为2,直线x=1到对称轴x=-1的距离也为3,∴(-3,8)的对称点为(1,8),∴m=8,当x=0时,由表格中数据可知:c=5.(2)解:∵对称轴是直线x=-1,∴由表格中数据可知:顶点为(-1,4),设y=a(x+1)2+4,将(0,5)代入y=a(x+1)2+4得,a+4=5,解得a=1,∴这个二次函数的解析式为y=(x+1)2+4=x²+2x+5.【点睛】本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求出函数对称轴是解本题的关键.5、 (1)(2)E点坐标为,弧长为(3)【解析】【分析】(1)将,代入,计算求解即可;(2)将与代入,得到,然后将解析式因式分解,得到点坐标分别为;如图,在直角坐标系中作,连接;点为中点,坐标为;点为中点,坐标为,,,有,,,,,得的值,进而可求出点坐标;,知,,AE= ,根据求解即可;(3),知,, 最小时,有,解得值,故可得值,进而可得出抛物线的解析式.(1)解:将与代入得∴用含的式子表示为.(2)解:将与代入得∴∴点坐标分别为如图,作,连接∴,∴点为中点,坐标为即;点为中点,坐标为即∵∴∴∴∵,,∴∴点坐标为∵∴∴∴AE= ∴的坐标为,的长为.(3)解:由题意知∵,∴∵最小时,有解得∴∴.【点睛】本题考查了代数式,待定系数法求二次函数解析式,二次函数最值,三角形相似的判定与性质,三角形的外接圆,弧长等知识.解题的关键与难点在于对知识的熟练掌握并能灵活运用.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试综合训练题,共31页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共35页。试卷主要包含了抛物线y=42+3的顶点坐标是,抛物线的对称轴是,已知点,,都在函数的图象上,则,抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共28页。试卷主要包含了若二次函数y=a等内容,欢迎下载使用。