搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版九年级数学下册第三十章二次函数综合训练试题(含详细解析)

    难点详解冀教版九年级数学下册第三十章二次函数综合训练试题(含详细解析)第1页
    难点详解冀教版九年级数学下册第三十章二次函数综合训练试题(含详细解析)第2页
    难点详解冀教版九年级数学下册第三十章二次函数综合训练试题(含详细解析)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步练习题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步练习题,共35页。试卷主要包含了二次函数y=a+bx+c等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数综合训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )
    A.a<4 B.a≤4 C.a<4且a≠0 D.a≤4且a≠0
    2、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
    A. B. C. D.
    3、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )
    A. B. C. D.
    4、已知二次函数的图象如图所示,根据图中提供的信息,可求得使成立的x的取值范围是( )

    A. B. C. D.或
    5、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )

    A.2 B.3 C.4 D.5
    6、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
    A.x=-3 B.x=-1 C.x=2 D.x=3
    7、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是(  )

    A.4 B.3 C.2 D.1
    8、已知二次函数y=ax2+bx+c的图象如图所示,则(  )

    A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0
    C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0
    9、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )

    A. B.
    C. D.
    10、二次函数的图像如图所示,那么点在( )

    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在东京奥运会跳水比赛中,中国小花全红婵的表现,令人印象深刻.在正常情况下,跳水运动员进行10米跳台训练时,必须在距水面5米之前完成规定的翻腾动作,并调整好入水姿势,否则容易出现失误.假设某运动员起跳后第t秒离水面的高度为h米,且.那么为了避免出现失误,这名运动员最多有_____秒时间,完成规定的翻腾动作.
    2、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.

    3、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.
    4、如果抛物线的顶点在轴上,那么的值是_________.
    5、如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1_____y2.(填“>”或“<”)
    三、解答题(5小题,每小题10分,共计50分)
    1、超市销售某种儿童玩具,如果每件利润为40元(市场管理部分规定,该种玩具每件利润不能超过60元),每天可售出50件,根据市场调查发现,销售单价每增加2元,每天销售量会减少1件,设销售单价增加元,每天售出件
    (1)请写出与之间的函数表达式
    (2)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
    2、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).
    (1)求该抛物线的函数表达式和顶点坐标;
    (2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).
    ①求直线BC的解析式;
    ②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.
    3、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.

    (1)求该抛物线的解析式;
    (2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
    (3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
    4、己知二次函数.
    (1)若此二次函数图象的对称轴为,求它的解析式;
    (2)当时,y随x增大而减小,求k的取值范围.
    5、如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,点为的中点.

    (1)求该抛物线的函数表达式;
    (2)若点是第四象限内该抛物线上一动点,求面积的最大值;
    (3)是抛物线的对称轴上一点,是抛物线上一点,直接写出所有使得以点,,,为顶点的四边形是平行四边形的点的坐标,并把求其中一个点的坐标的过程写出来.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.
    【详解】
    解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,
    ∴Δ=42﹣4a×1≥0,且a≠0,
    解得:a≤4,且a≠0.
    故选:D.
    【点睛】
    本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.
    2、C
    【解析】
    【分析】
    根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
    【详解】
    解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
    ∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
    平移后的抛物线经过三点、、,


    故选C
    【点睛】
    本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
    3、C
    【解析】
    【分析】
    根据平移的规律:左加右减,上加下减可得函数解析式.
    【详解】
    解:因为y=x2-2x+3=(x-1)2+2.
    所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.
    故选:C.
    【点睛】
    本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
    4、D
    【解析】
    【分析】
    根据函数图象写出y=1对应的自变量x的值,再根据判断范围即可.
    【详解】
    由图可知,使得时
    使成立的x的取值范围是或
    故选:D.
    【点睛】
    本题考查了二次函数与不等式,准确识图是解题的关键.
    5、B
    【解析】
    【分析】
    由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.
    【详解】
    解:∵对称轴是直线x=1,且经过点(0,2),
    ∴左同右异ab<0,c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴b2-4ac>0,所以②正确;
    ∵抛物线对称轴是直线x=1,
    ∴x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∴9a+3b+c<2,所以③正确;
    ∵对称轴为x=1,
    ∴=1,即b=-2a,
    ∵x=-1时,y=a-b+c>0,
    ∴3a+c>0,所以④错误;
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∵点(4,y3)关于直线x=1的对称点为(-2,y3),且,
    ∴y1<y3<y2,所以⑤不正确;
    故选:B.
    【点睛】
    本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数a、b、c的关系是正确判断的前提.
    6、C
    【解析】
    【分析】
    一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
    【详解】
    解:一元二次方程的两个根分别是和5,
    则二次函数图象与轴的交点坐标为、,
    根据函数的对称性,函数的对称轴为直线,
    故选:C.
    【点睛】
    本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
    7、B
    【解析】
    【分析】
    看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.
    【详解】
    ∵抛物线与x轴有两个不同的交点,
    ∴﹣4ac>0;
    故①正确;
    ∵抛物线开口向下,与y轴交于正半轴,>0,
    ∴a<0,b>0, c>0,
    ∴abc<0;
    故②正确;
    ∵,
    ∴4a+b=0,
    故③正确;
    x= -2时,y=4a-2b+c,
    根据函数的增减性,得4a-2b+c<0;
    故④错误.
    故选B.
    【点睛】
    本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.
    8、B
    【解析】
    【分析】
    根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.
    【详解】
    解:∵抛物线的开口向上,
    ∴a>0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴>0,
    ∴b<0,
    ∵抛物线与y轴的交点在x轴的上方,
    ∴c>0,
    ∵抛物线与x轴有一个交点,
    ∴Δ=0,
    故选:B.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.
    9、D
    【解析】
    【分析】
    分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
    【详解】
    解:∵,,,
    ∴BC=,
    过CA点作CH⊥AB于H,
    ∴∠ADE=∠ACB=90°,
    ∵,
    ∴CH=4.8,
    ∴AH=,
    当0≤x≤6.4时,如图1,

    ∵∠A=∠A,∠ADE=∠ACB=90°,
    ∴△ADE∽△ACB,
    ∴,即,解得:x=,
    ∴y=•x•=x2;
    当6.4<x≤10时,如图2,

    ∵∠B=∠B,∠BDE=∠ACB=90°,
    ∴△BDE∽△BCA,
    ∴,
    即,解得:x=,
    ∴y=•x•=;
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
    10、C
    【解析】
    【分析】
    根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.
    【详解】
    由函数图像可得:
    ∵抛物线开口向上,
    ∴a>0,
    又∵对称轴在y轴右侧,
    ∴,
    ∴b0,
    ∴其图象开口向上,
    ∵时,y随x 的增大而减小,
    ∴对称轴位于x=1的右侧或对称轴为直线x=1,
    ∴,
    解得:.
    【点睛】
    此题考查的是二次函数的图象与系数的关系,掌握对称轴的概念、二次函数的图象的性质是解决此题关键.
    5、 (1)
    (2)最大值为2
    (3),,
    【解析】
    【分析】
    (1)将点A,B坐标代入得方程组,求解即可;
    (2)分别求出点B,C,D的坐标,运用待定系数法求出BC解析式,设,则,,根据三角形面积公式可得二次函数关系式,配方求解即可;
    (3)分两种情况:①若AD是平行四边形的对角线,②若AD是平行四边形的边,分别进行讨论即可.
    (1)
    将,代入

    解这个方程组得
    ∴该抛物线的函数表达式为
    (2)
    在中,当时,,
    ∴,
    ∵点D为线段BC的中点,且,
    ∴,即,
    设直线BC的解析式为,
    将,代入得,

    解得,
    ∴直线BC的解析式为,
    过点作轴交于点,

    设,则



    当时,有最大值为2
    (3)
    满足条件的点的坐标为:,,
    由可得对称轴为:直线,
    设,又,
    ①若AD是平行四边形的对角线,
    当MN与AD互相平分时,四边形ANDM是平行四边形,

    即MN经过AD的中点(),即(0,-1)

    ∴n=-1,
    ∴,
    ②若AD是平行四边形的边,
    Ⅰ.当NM∥AD且NM=AD时,四边形ANMD是平行四边形,

    ∵A(-2,0),D(2,2),点M的横坐标为1,
    ∴点N的横坐标为1-4=-3,

    ∴点N的坐标为;
    Ⅱ.当NM∥AD且NM=AD时,四边形AMND是平行四边形,

    ∵A(-2,0),D(2,2),点M的横坐标为1,
    ∴点N的横坐标为1+4=5,

    ∴点N的坐标为;
    综上所述,点M的坐标为,,.
    【点睛】
    本题是二次函数有关的综合题,主要考查了待定系数法求函数解析式,二次函数图象和性质,平行四边形性质等,熟练掌握待定系数法、二次函数图象和性质及平行四边形性质等相关知识,运用分类讨论思想和数形结合思想是解题关键.

    相关试卷

    数学九年级下册第30章 二次函数综合与测试同步达标检测题:

    这是一份数学九年级下册第30章 二次函数综合与测试同步达标检测题,共36页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步练习题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步练习题,共35页。

    数学九年级下册第30章 二次函数综合与测试练习题:

    这是一份数学九年级下册第30章 二次函数综合与测试练习题,共34页。试卷主要包含了已知点等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map