![2022年精品解析冀教版九年级数学下册第三十章二次函数专题攻克试题(含详细解析)01](http://www.enxinlong.com/img-preview/2/3/12720909/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版九年级数学下册第三十章二次函数专题攻克试题(含详细解析)02](http://www.enxinlong.com/img-preview/2/3/12720909/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年精品解析冀教版九年级数学下册第三十章二次函数专题攻克试题(含详细解析)03](http://www.enxinlong.com/img-preview/2/3/12720909/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试测试题
展开九年级数学下册第三十章二次函数专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
A.1 B.-1 C. D.无法确定
2、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
3、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
A.正方体集装箱的体积,棱长xm
B.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykm
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
D.高为14m的圆柱形储油罐的体积,底面圆半径xm
4、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
5、已知二次函数,当时,随的增大而减小,则的取值范围是( )
A. B. C. D.
6、二次函数的最大值是( )
A. B. C.1 D.2
7、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+4x+c有两个相异的不动点x1,x2,且x1<3<x2,则c的取值范围是( )
A.c<﹣6 B.c<﹣18 C.c<﹣8 D.c<﹣11
8、抛物线的顶点坐标为( )
A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)
9、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
A.x=-3 B.x=-1 C.x=2 D.x=3
10、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是( )
A.4 B.3 C.2 D.1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.
2、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)
3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
4、已知二次函数,若,则y的取值范围是______.
5、如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c过点(﹣1,﹣4),则下列结论:①对于任意的x=m,均有am2+bm+c≥﹣6;②ac>0;③若点(),(,y2)在抛物线上,则y1>y2;④关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1;⑤b﹣6a=0;其中正确的有_______(填序号).
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,开口向上的抛物线与轴交于、两点,为抛物线的顶点,为坐标原点.若、()的长分别是方程的两根,且.
(1)求抛物线对应的二次函数的解析式;
(2)过点作交抛物线于点,求点的坐标;
(3)在(2)的条件下,过点任作直线交线段于点,设点、点到直线的距离分别为、,试求的最大值.
2、二次函数(、、是常数,)的自变量和函数值部分对应值如下表:
…
-3
-2
-1
0
1
…
…
8
5
4
5
…
根据以上列表,回答下列问题:
(1)直接写出、的值;
(2)求此二次函数的解析式.
3、如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,点为的中点.
(1)求该抛物线的函数表达式;
(2)若点是第四象限内该抛物线上一动点,求面积的最大值;
(3)是抛物线的对称轴上一点,是抛物线上一点,直接写出所有使得以点,,,为顶点的四边形是平行四边形的点的坐标,并把求其中一个点的坐标的过程写出来.
4、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).
(1)请求出y(万件)与x(元/件)之间的函数关系式;
①求出当4≤x≤8时的函数关系式;
②求出当8<x≤28时的函数关系式.
(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;
(3)求出年利润的最大值.
5、如图, 在平面直角坐标系 中, 直线 与 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.
(1)用含 的代数式表示顶点 的坐标:
(2)当顶点 在 内部, 且 时,求抛物线的表达式:
(3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
【详解】
当a>0时,∵对称轴为x=,
当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
∴4a+2-2=4.
∴a=1,
当a<0时,同理可得
y有最大值为2; y有最小值为4a+2,
∴2-(4a+2)=4,
∴a=-1,
综上,a的值为
故选:C
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
2、B
【解析】
【分析】
根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
【详解】
解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;
由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1,m),(x2,m),由图象可知此时m>-2
因此④正确的,
综上所述,正确的有2个,
故选:B.
【点睛】
考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
3、D
【解析】
【分析】
根据题意,列出关系式,即可判断是否是二次函数.
【详解】
A.由题得:,不是二次函数,故此选项不符合题意;
B.由题得:,不是二次函数,故此选项不符合题意;
C.由题得:,不是二次函数,故此选项不符合题意;
D.由题得:,是二次函数,故此选项符合题意.
故选:D.
【点睛】
本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.
4、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
C.由图象可知,当x=1时,y=,故C不符合题意,
D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
故选:D.
【点睛】
本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
5、D
【解析】
【分析】
先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.
【详解】
解:∵,
∴对称轴为直线x=b,开口向下,
在对称轴右侧,y随x的增大而减小,
∵当x>1时,y随x的增大而减小,
∴1不在对称轴左侧,
∴b≤1,
故选:D.
【点睛】
本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.
6、D
【解析】
【分析】
由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
【详解】
解:由图象的性质可知,在直线处取得最大值
∴将代入中得
∴最大值为2
故答案为:2.
【点睛】
本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
7、B
【解析】
【分析】
由题意得不动点的横纵坐标相等,即在直线y=x上,故二次函数与直线y=x有两个交点,且横坐标满足x1<3<x2,可以理解为x=3时,一次函数的值大于二次函数的值.
【详解】
解:由题意得:不动点在一次函数y=x图象上,
∴一次函数y=x与二次函数的图象有两个不同的交点,
∵两个不动点x1,x2满足x1<3<x2,
∴x=3时,一次函数的函数值大于二次函数的函数值,
∴3>32+4×3+c,
∴c<-18.
故选:B.
【点睛】
本题以新定义为背景,考查了二次函数图象和一次函数图象的交点与系数间的关系,本题亦可以转化为方程的解来解题.
8、A
【解析】
【分析】
根据抛物线的顶点坐标为 ,即可求解.
【详解】
解:抛物线的顶点坐标为.
故选:A
【点睛】
本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.
9、C
【解析】
【分析】
一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
【详解】
解:一元二次方程的两个根分别是和5,
则二次函数图象与轴的交点坐标为、,
根据函数的对称性,函数的对称轴为直线,
故选:C.
【点睛】
本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
10、B
【解析】
【分析】
看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.
【详解】
∵抛物线与x轴有两个不同的交点,
∴﹣4ac>0;
故①正确;
∵抛物线开口向下,与y轴交于正半轴,>0,
∴a<0,b>0, c>0,
∴abc<0;
故②正确;
∵,
∴4a+b=0,
故③正确;
x= -2时,y=4a-2b+c,
根据函数的增减性,得4a-2b+c<0;
故④错误.
故选B.
【点睛】
本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.
二、填空题
1、(,)
【解析】
【分析】
设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
【详解】
解:∵点A是抛物线图像上一点
故设A(x,x2),
∵将点A向下平移2个单位到点B,
故B(x,x2-2)
∵把A绕点B顺时针旋转120°得到点C,如图,
过点B作BD⊥AB于B,过点C作CD⊥BD于D,
AB=BC=2,∠ABC=120°,∠ABD=90°,
∴∠DBC=30°
故CD=,BD=,
故C(x+,x2-3),
把C(x+,x2-3)代入,
∴x2-3=(x+)2,
解得x=-
∴A(-,3)
故答案为:(,3).
【点睛】
此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
2、
【解析】
【分析】
根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.
【详解】
∵与x轴交于A,B两点(点A在点B左侧),
令,则,
解得:,.
∴A点坐标为(-1,0).
∵直线经过点A,
∴,
解得:,
∴该直线解析式为.
当时,直线解析式为,
令,则,
∴的坐标为(0,n).
联立,即,
解得:,.
∴的横坐标为n+1.
将代入中,得:,
∴的坐标为().
∴
故答案为:.
【点睛】
本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.
3、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
4、
【解析】
【分析】
根据题目中的函数解析式和二次函数的性质可以求得y的取值范围.
【详解】
解:∵y=x2-4x+1=(x-2)2-3,抛物线开口向上,
∴当x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,
∵-1≤x≤4,2-(-1)=3,4-2=2,
∴当x=-1时y取得最大值,当x=2时,y取得最小值,
当x=-1时,y=6,当x=2时,y=-3,
∴y的取值范围是-3≤y≤6,
故答案为:-3≤y≤6.
【点睛】
本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.
5、①④⑤
【解析】
【分析】
根据二次函数的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系综合进行判断即可.
【详解】
解:∵抛物线y=ax2+bx+c的顶点为(﹣3,﹣6),
∴当x=﹣3时,y最小值=﹣6,
∴对于任意的x=m,其函数值y=am2+bm+c≥﹣6,
因此①正确;
∵开口向上,
∴a>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∴ac<0,
因此②不正确;
∵点(),(,y2)在对称轴右侧的抛物线上,根据在对称轴右侧,y随x的增大而增大,
∴y1<y2,
因此③不正确;
∵抛物线y=ax2+bx+c过点(﹣1,﹣4),由对称轴为x=﹣3,根据对称性可知,抛物线y=ax2+bx+c还过点(﹣5,﹣4),
∴当y=﹣4时,即方程ax2+bx+c=﹣4有两个不相等的实数根﹣1和﹣5,
因此④正确;
∵对称轴x=﹣=﹣3,
∴b﹣6a=0,
因此⑤正确;
综上所述,正确的结论有①④⑤,
【点睛】
本题考查了二次函数的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系综合,掌握二次函数的图象与性质是解题的关键.
三、解答题
1、 (1)
(2)点的坐标为
(3)
【解析】
【分析】
(1)先求出的两根,可得点的坐标为,点的坐标为.从而得到的坐标为.再由.可得的坐标为.然后设抛物线对应的二次函数的解析式为.把点代入,即可求解;
(2)根据题意可设点的坐标为,则有.再由点在抛物线上,可得.从而得到,即可求解;
(3)由(2)知:,而,可得到,然后过点A作.根据三角形的面积,可得.再由,可得,即可求解.
(1)
解:如图,过点作轴于,则为的中点.
解方程得:或.
而,则点的坐标为,点的坐标为.
∴的坐标为.
又因为,
∴.
∴的坐标为.
设抛物线对应的二次函数的解析式为.
∵抛物线过点,则,解得:.
故抛物线对应的二次函数的解析式为.
(2)
∵,
∴.
又∵,
设点的坐标为,则有.
∵点在抛物线上,
∴.
化简得:.
解得:,(舍去).
故点的坐标为.
(3)
由(2)知:,而,
∴.
过点A作.
∵,
∴.
∵,
∴.
即此时的最大值为.
【点睛】
本题主要考查了二次函数与三角形的综合题,等腰三角形的性质,熟练掌握二次函数的图象和性质等腰三角形的性质是解题的关键.
2、 (1)c=5,m=8
(2)y=x²+2x+5
【解析】
【分析】
(1)根据抛物线的对称性及表格中函数值x相等可求出对称轴进而求出m的值;根据自变量x=0可求出抛物线与y轴的交点,即可求得c的值;
(2)根据对称轴为x=-1,得到抛物线顶点为(-1,4),设顶点式为y=a(x+1)2+4,代入其中一个点求出a的值即可求出二次函数解析式.
(1)
解:根据图表可知:
二次函数的图象过点(0,5),(-2,5),
∴二次函数的对称轴为:直线,
∵直线x=-3到对称轴x=-1的距离为2,直线x=1到对称轴x=-1的距离也为3,
∴(-3,8)的对称点为(1,8),
∴m=8,
当x=0时,由表格中数据可知:c=5.
(2)
解:∵对称轴是直线x=-1,
∴由表格中数据可知:顶点为(-1,4),
设y=a(x+1)2+4,
将(0,5)代入y=a(x+1)2+4得,a+4=5,
解得a=1,
∴这个二次函数的解析式为y=(x+1)2+4=x²+2x+5.
【点睛】
本题考查的是二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数的解析式,能熟练求出函数对称轴是解本题的关键.
3、 (1)
(2)最大值为2
(3),,
【解析】
【分析】
(1)将点A,B坐标代入得方程组,求解即可;
(2)分别求出点B,C,D的坐标,运用待定系数法求出BC解析式,设,则,,根据三角形面积公式可得二次函数关系式,配方求解即可;
(3)分两种情况:①若AD是平行四边形的对角线,②若AD是平行四边形的边,分别进行讨论即可.
(1)
将,代入
,
解这个方程组得
∴该抛物线的函数表达式为
(2)
在中,当时,,
∴,
∵点D为线段BC的中点,且,
∴,即,
设直线BC的解析式为,
将,代入得,
解得,
∴直线BC的解析式为,
过点作轴交于点,
设,则
,
当时,有最大值为2
(3)
满足条件的点的坐标为:,,
由可得对称轴为:直线,
设,又,
①若AD是平行四边形的对角线,
当MN与AD互相平分时,四边形ANDM是平行四边形,
即MN经过AD的中点(),即(0,-1)
∴
∴n=-1,
∴,
②若AD是平行四边形的边,
Ⅰ.当NM∥AD且NM=AD时,四边形ANMD是平行四边形,
∵A(-2,0),D(2,2),点M的横坐标为1,
∴点N的横坐标为1-4=-3,
∴
∴点N的坐标为;
Ⅱ.当NM∥AD且NM=AD时,四边形AMND是平行四边形,
∵A(-2,0),D(2,2),点M的横坐标为1,
∴点N的横坐标为1+4=5,
∴
∴点N的坐标为;
综上所述,点M的坐标为,,.
【点睛】
本题是二次函数有关的综合题,主要考查了待定系数法求函数解析式,二次函数图象和性质,平行四边形性质等,熟练掌握待定系数法、二次函数图象和性质及平行四边形性质等相关知识,运用分类讨论思想和数形结合思想是解题关键.
4、 (1)①y=;②y=-x+28
(2)w=160-640x(4≤x≤8)-(x-16)2+114(8
【解析】
【分析】
(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入计算即可;
②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,计算即可;
(2)分4≤x≤8、8<x≤28两种情况,利润w(万元)与x(元/件)之间的函数关系式;
(3)分4≤x≤8、8<x≤28两种情况,分别求出w的最大值,进而求解;
(1)
①当4≤x≤8时,设(k≠0).
将点A(4,40)的坐标代入,得k=4×40=160,
∴y=
②当8<x≤28时,设y=k′x+b(k′≠0).
分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,得解得
∴y=-x +28
(2)
当4≤x≤8时,w=
当8<x≤28时,w=(x-4)y=(x-4)(-x+28)=-x2+32x-112
=-(x-16)2+114
综上可知,w(万元)与x(元/件)之间的函数关系式为
(3)
当4≤x≤8时,
∵-640<0,
∴w随x增大而增大,
∴当x=8时,w有最大值,为
当8<x≤28时,
∵-1<0
∴当x=16时,w有最大值,为114
∵80<114
∴当每件的销售价格定为16元时,年利润最大为114元
【点睛】
本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.
5、 (1)
(2);
(3)1<a<3
【解析】
【分析】
(1)利用配方法将抛物线解析式化为顶点式即可解答;
(2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;
(3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解
(1)
解:拋物线 ,
∴顶点C的坐标为;
(2)
解:对于,当x=0时,y=5,当y=0时,x=5,
∴A(5,0),B(0,5),
∵顶点 在 内部, 且 ,
∴,
∴a=2,
∴拋物线的表达式为 ;
(3)
解:由题意,平移后的抛物线的顶点P的坐标为,
∵平移后的抛物线的顶 点 仍在 内,
∴,
解得:1<a<3,
即 的取值范围为1<a<3.
【点睛】
本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.
2020-2021学年第30章 二次函数综合与测试习题: 这是一份2020-2021学年第30章 二次函数综合与测试习题,共28页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
冀教版九年级下册第30章 二次函数综合与测试随堂练习题: 这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了抛物线,,的图象开口最大的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
初中第30章 二次函数综合与测试巩固练习: 这是一份初中第30章 二次函数综合与测试巩固练习,共34页。试卷主要包含了下列函数中,二次函数是,二次函数的最大值是等内容,欢迎下载使用。