搜索
    上传资料 赚现金
    英语朗读宝

    2022年精品解析冀教版九年级数学下册第三十章二次函数章节测试试卷(精选)

    2022年精品解析冀教版九年级数学下册第三十章二次函数章节测试试卷(精选)第1页
    2022年精品解析冀教版九年级数学下册第三十章二次函数章节测试试卷(精选)第2页
    2022年精品解析冀教版九年级数学下册第三十章二次函数章节测试试卷(精选)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学九年级下册第30章 二次函数综合与测试课后复习题

    展开

    这是一份数学九年级下册第30章 二次函数综合与测试课后复习题,共29页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次项系数等于1的一个二次函数,其图象与x轴交于两点,且过两点.若,则ab的取值范围为(       A. B. C. D.2、抛物线的对称轴是(     A.直线 B.直线 C.直线 D.直线3、如图,在矩形ABCD中,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点PQ在矩形边上的运动速度为每秒1个单位长度,点PQ在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映St之间函数关系的是(       A. B.C. D.4、在同一坐标系内,函数ykx2ykx﹣2(k≠0)的图象大致如图(  )A. B.C. D.5、已知是抛物线上的点,且,下列命题正确的是(       A.若,则 B.若,则C.若,则 D.若,则6、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为(       A. B.C. D.7、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为(      )A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-38、抛物线的顶点坐标为(  )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)9、将抛物线yx2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为(  )A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+310、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣x2+4的图像上,那么mn的大小关系是:m_____n.(填“>”、“=”或“<”)2、当k-2≤xk时,函数yx2-4x+4(k为常数)的最小值为4,则k的值是____.3、如图边长为n的正方形OABC的边OAOC分别在x轴和y轴的正半轴上,A1A2A3、...、An1OAn等分点,B1B2B3、...、Bn1CBn等分点,连接A1B1A2B2A3B3、...、An1Bn1,分别交于点C1C2C3、...、Cn1.当B25C25=8C25A25时,则n=_____.4、抛物线y=(x﹣1)2+3的顶点坐标为___.5、二次函数的图像如图所示,对称轴为直线,根据图中信息可求得该二次函数的解析式为______.三、解答题(5小题,每小题10分,共计50分)1、已知抛物线y=﹣x2bxcx轴交于AB两点(点A在点B的左侧),与y轴的交点为C(0,3),其对称轴是直线x=1,点P是抛物线上第一象限内的点,过点PPQx轴,垂足为Q,交BC于点D,且点P的横坐标为m(1)求这条抛物线对应的函数表达式;(2)如图1,PEBC,垂足为E,当DEBD时,求m的值;(3)如图2,连接AP,交BC于点H,则的最大值是      2、如图,在平面直角坐标系中,抛物线yax2x﹣4与x轴交于点A(4,0),与y轴交于点C.B(12,0),联结BC.(1)求该抛物线解析式;(2)求∠ACB的正弦值;(3)如图,点D为抛物线上一点,直线ADy轴于点E,交线段BC于点F.若△ECA∽△EFC,求点D的坐标.3、在平面直角坐标系中,抛物线轴于点,点,(点在点的左侧),点是抛物线上一点.(1)若时,用含的式子表示(2)若的外接圆为,求点的坐标和弧的长;(3)在(1)的条件下,若有最小值,求此时的抛物线解折式4、在平面直角坐标系xOy中,已知抛物线:yax2-2ax+4(a>0).(1)抛物线的对称轴为x    ;抛物线与y轴的交点坐标为    (2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;(3)若Am-1,y1),Bmy2),Cm+2,y3)为抛物线上三点,且总有y1y3y2,结合图象,求m的取值范围.5、已知二次函数的图象经过点(1)求二次函数的表达式;(2)求二次函数的图象与轴的交点坐标. -参考答案-一、单选题1、D【解析】【分析】由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.【详解】解:由已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0), 所以可设交点式y=(x-m)(x-n), 分别代入 ∵0<mn<3, ∴0<≤4 ,0<≤4 , mnab不能取16 , ∴0<ab<16 ,故选D【点睛】本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.2、B【解析】【分析】由抛物线解析式的顶点式即可求得抛物线的对称轴.【详解】抛物线的对称轴是直线故选:B【点睛】本题考查了抛物线的图象与性质,当抛物线的解析式为时,对称轴为直线;当抛物线的解析式为时,对称轴为直线x=h3、D【解析】【分析】分别求出点PADBD上,利用三角形面积公式构建关系式,可得结论.【详解】解:∵四边形ABCD是矩形,AD=BC=4,∠A=∠C=90°,ADBC∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,BD=2AD=8,当点PAD上时,PEBQS△PBQ =·BQ·PE=•(8-2t)•(4-t)•sin60°=(4-t2(0<t<4),当点P在线段BD上时,QE’BPS△PBQ=·BP·QE’=[12-2(t-4)]•(t-)sin60°=-t2+t-16(4<t≤8),观察图象可知,选项D满足条件,故选:D【点睛】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.4、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.5、C【解析】【分析】先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.【详解】解:抛物线的对称轴为:直线,点到对称轴的距离近,即,当,点到对称轴的距离远,即故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.6、B【解析】【分析】根据增长率问题的计算公式解答.【详解】解:第2年的销售量为第3年的销售量为故选:B【点睛】此题考查了增长率问题的计算公式a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.7、A【解析】【分析】按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.【详解】解:抛物线y=2x2先向左平移2个单位得到解析式:y=2(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=2(x+2)2+3.故选:A.【点睛】本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.8、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.9、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线yx2先向右平移3个单位长度,得:y=(x﹣3)2再向上平移5个单位长度,得:y=(x﹣3)2+5,故选:B【点睛】本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.10、C【解析】【分析】根据平移的规律:左加右减,上加下减可得函数解析式.【详解】解:因为y=x2-2x+3=(x-1)2+2.所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.故选:C.【点睛】本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.二、填空题1、【解析】【分析】先利用二次函数的性质得到抛物线的对称轴为轴,然后根据二次函数的性质解决问题.【详解】解:二次函数可知,抛物线开口向下,抛物线的对称轴为轴,所以当时,的增大而增大,故答案为:【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.2、0或6##6或0【解析】【分析】先求出函数的顶点坐标,再根据题意分情况讨论即可求解.【详解】y=x2-4x+4=(x-2)2∴顶点坐标为(2,0)∴当k≤2时,x=k时,函数y=x2-4x+4的最小值为4k2-4k+4=4解得k=0或k=4(舍去)k-2≥2时,x= k-2时,函数y=x2-4x+4的最小值为4故(k-2)2-4(k-2)+4=4解得k=6或k=2(舍去)故答案为6或0.【点睛】此题主要考查二次函数的图象与性质,解题的关键是根据题意分情况讨论.3、75【解析】【分析】根据题意表示出OA25B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.【详解】解:∵正方形OABC的边长为n,点A1A2,…,An-1OAn等分点,点B1B2,…,Bn-1CBn等分点,OA25=n=25,A25B25=nB25C25=8C25A25C25(25,),∵点C25上,解得n=75.故答案为:75.【点睛】本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.4、(1,3)【解析】【分析】根据顶点式判断顶点即可.【详解】解:∵抛物线解析式为y=(x﹣1)2+3∴顶点坐标是(1,3).故答案为:(1,3)【点睛】本题考查了二次函数解析式---顶点式,明确的顶点坐标为(hk)是解答本题的关键.5、y=-x2-2x+3【解析】【分析】根据图象与xy轴的交点坐标和对称轴,利用待定系数法求二次函数的解析式即可.【详解】解:设该二次函数的解析式为y=ax2+bx+ca≠0),由图象知:当x=1时,y=0,当x=0时,y=3,又对称轴为直线x=-1,,解得:∴该二次函数的解析式为y=-x2-2x+3,故答案为:y=-x2-2x+3.【点睛】本题考查二次函数的图象与性质、待定系数法求二次函数的解析式,熟练掌握待定系数法求二次函数的解析式是解答的关键.三、解答题1、 (1)(2)m=2(3)【解析】【分析】(1)根据对称轴是直线x=1,利用二次函数对称轴方程可求出b,再根据抛物线与y轴的交点坐标C(0,3)可求出c,即可求出二次函数解析式;(2)先求出抛物线与x轴的交点坐标,可得OB=OC,继而得出OBC是等腰直角三角形,由PQOBPEBC,可得DQBPED是等腰直角三角形,根据等腰直角三角形的性质可得BQ=DQBD=DE=PD,由P的横坐标是m,用含m表示出DEBD的长,再根据DE=BD列方程求解;(3)过点A作垂直x轴直线交BC与点G,先直线BC解析式,再求AG,由 PQOBAGOB,可得 PQAG,继而可得PDH∽△AHG,由相似三角形的性质可得,再根据二次函数求最值求解即可(1)C (0,3)代入y=-x2+bx+c可得c=3,∵对称轴是直线x=1,=1,即-=l,解得b=2,∴二次函数解析式为y=-x2+2x+3;(2)解得A(-1,0),B(3,0),OB=3,OC=3,∴△OBC是等腰直角三角形,∴∠OBC=45°,BC=PQOBPEBC∴∠PQB=∠PED=90°,∴∠QDB=∠PDE=∠OBC=45°,∴△DQBPED是等腰直角三角形,BQ=DQBD=DE=P点横坐标是m,且在抛物线上,PQ=OQ=mBQ=DQ=3-mBD=PD=PQ-DQ=DE=DEBD解得:(舍去),m=2(3)过点Ax轴的垂线交BC于点G设直线BC的解析式为:y=kx+bB(3,0),C(0,3)代入,可得:解得∴直线BC的解析式为:y=-x+3,A(-1,0),G(-1,4),AG=4,PQOBAGOBPQAG∴△PDH∽△AHG∴当a=时,有最大值,最大值是故答案为:【点睛】本题属于二次函数综合题,主要考查待定系数法求函数解析式,二次函数最值问题,相似三角形的性质与判定等知识,第(3)问将比例转化是解题关键.2、 (1)抛物线的解析式为(2)∠ACB的正弦值为(3)点D的坐标为【解析】【分析】(1)将A点坐标代入,求出的值,然后回代抛物线的解析式即可;(2)根据抛物线解析式求出点的坐标,知是等腰直角三角形,求出的值,如图,延长,作,垂足为为等腰直角三角形,求出的值,在中,,由勾股定理知,将线段值代入求解即可;(3)由可知,在中,,解得的值,得到点坐标,设过两点的直线解析式为,将两点坐标代入求得解析式,然后与抛物线解析式联立求出D点坐标即可;(1)解:将代入中得解得∴抛物线的解析式为: (2)解:将代入解得点坐标为是等腰直角三角形B点坐标为如图,延长,作,垂足为为等腰直角三角形中,,由勾股定理知的正弦值为(3)解:∵∴在中,∴解得点坐标为∴设过两点的直线解析式为将两点坐标代入解析式得解得∴过两点的直线解析式为联立一次函数解析式与抛物线解析式得解得(舍去)D点坐标为【点睛】本题考查了二次函数解析式,等腰直角三角形的判定与性质,正弦值,勾股定理,三角形相似,一次函数与二次函数的交点坐标等知识.解题的关键在于对知识的综合灵活运用.3、 (1)(2)E点坐标为,弧长为(3)【解析】【分析】(1)将代入,计算求解即可;(2)将代入,得到,然后将解析式因式分解,得到点坐标分别为;如图,在直角坐标系中作,连接;点中点,坐标为;点中点,坐标为,有,得的值,进而可求出点坐标;,知,AE= ,根据求解即可;(3),知最小时,有,解得值,故可得值,进而可得出抛物线的解析式.(1)解:将代入∴用含的式子表示(2)解:将代入点坐标分别为如图,作,连接∴点中点,坐标为;点中点,坐标为点坐标为∴AE= 的坐标为的长为(3)解:由题意知最小时,有解得【点睛】本题考查了代数式,待定系数法求二次函数解析式,二次函数最值,三角形相似的判定与性质,三角形的外接圆,弧长等知识.解题的关键与难点在于对知识的熟练掌握并能灵活运用.4、 (1)1,(0,4)(2)顶点坐标为(1,0),y=4x2-8x+4(3)【解析】【分析】(1)根据二次函数对称轴公式,以及与y轴的交点坐标公式;(2)根据二次函数与x轴交点公式,以及待定系数法求解析式;(3)先求对称点坐标根据函数的增减性解决本题.(1)解:x=0时,yax2-2ax+4=4,所以抛物线的对称轴是直线x=1,抛物线与y轴的交点坐标是(0,4),故答案为:1,(0,4).(2)解:∵抛物线的顶点恰好在x轴上,∴抛物线的顶点坐标为(1,0),把(1,0)代入yax2-2ax+4得:0=a×12-2a×1+4,解得:a=4,∴抛物线的解析式为y=4x2-8x+4.(3)解:Am-1,y1)关于对称轴x=1的对称点为A′(3-my1),Bmy2)关于对称轴x=1的对称点为B′(2-my2),若要y1y3y2,则3-mm+2>2-m,解得:【点睛】本题考查二次函数图像求对称轴公式,以及与x轴,y轴的交点公式,以及函数的增减性,掌握数形结合的思想是解决本题的关键.5、 (1)yx 2+ x(2)0,﹣).【解析】【分析】1)利用待定系数法,把代入函数解析式即可求;2)令x0,求得y的值即可得出结论.(1)解:∵二次函数yax+122的图象经过点(﹣56),a(﹣5+1226解得:a∴二次函数的表达式为:yx+122,即yx 2+ x(2)解:令x0,则y×(0+122=﹣∴二次函数的图象与y轴的交点坐标为(0,﹣).【点睛】本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键. 

    相关试卷

    2020-2021学年第30章 二次函数综合与测试课后练习题:

    这是一份2020-2021学年第30章 二次函数综合与测试课后练习题,共32页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试同步练习题:

    这是一份数学九年级下册第30章 二次函数综合与测试同步练习题,共33页。试卷主要包含了若点A等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共35页。试卷主要包含了抛物线y=42+3的顶点坐标是,抛物线的对称轴是,已知点,,都在函数的图象上,则,抛物线的顶点坐标为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map