|试卷下载
搜索
    上传资料 赚现金
    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试卷
    立即下载
    加入资料篮
    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试卷01
    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试卷02
    2022年冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试卷03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步测试题

    展开
    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试同步测试题,共30页。

    九年级数学下册第二十九章直线与圆的位置关系专项练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为(  )

    A.15° B.20° C.25° D.30°
    2、如图,中,,,点O是的内心.则等于( )

    A.124° B.118° C.112° D.62°
    3、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为( )

    A.4 B. C. D.1
    4、如图,矩形ABCD中,G是BC的中点,过A、D、G三点的⊙O与边AB、CD分别交于点E、点F,给出下列判断:(1)AC与BD的交点是⊙O的圆心;(2)AF与DE的交点是⊙O的圆心;(3)AE=DF;(4)BC与⊙O相切,其中正确判断的个数是( )

    A.4 B.3 C.2 D.1
    5、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是(  )

    A.30° B.36° C.45° D.72°
    6、如图,正五边形ABCDE内接于⊙O,则∠CBD的度数是(  )

    A.30° B.36° C.60° D.72°
    7、在同一平面内,有一半径为6的⊙O和直线m,直线m上有一点P,且OP=4;则直线m与⊙O的位置关系是 ( )
    A.相交 B.相离 C.相切 D.不能确定
    8、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,-3).则经画图操作可知:△ABC的外接圆的圆心坐标是( )

    A.(-2,-1) B.(-1,0) C.(-1,-1) D.(0,-1)
    9、如图,正方形ABCD的边长为8,若经过C,D两点的⊙O与直线AB相切,则⊙O的半径为( )

    A.4.8 B.5 C.4 D.4
    10、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
    A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,、是的切线,其中、为切点,点在上,,则______.

    2、如图,在△ABC中,AC=BC,点O在AB上,以OA为半径的圆O与BC相切于点C,∠B=_________.

    3、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
    4、若的半径为5cm,点到圆心的距离为4cm,那么点与的位置关系是__.
    5、斛是中国古代的一种量器.据《汉书 .律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆” . 如图所示,
    问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的边长为________尺.

    三、解答题(5小题,每小题10分,共计50分)
    1、如图,AB是ΘO的直径,弦AD平分∠BAC,过点D作DE⊥AC,垂足为E.

    (1)判断DE所在直线与ΘO的位置关系,并说明理由;
    (2)若AE=4,ED=2,求ΘO的半径.
    2、如图,AB为的切线,B为切点,过点B作,垂足为点E,交于点C,连接CO,并延长CO与AB的延长线交于点D,与交于点F,连接AC.

    (1)求证:AC为的切线:
    (2)若半径为2,.求阴影部分的面积.
    3、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.

    (1)求证:直线DC是⊙O的切线;
    (2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).
    4、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

    (1)求证:DE是⊙O的切线;
    (2)若DE=8,AE=6,求⊙O的半径.
    5、如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(1,0),(7,0).

    (1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,那么称点P为线段AB的“完美点”.
    ①设A、B、P三点所在圆的圆心为C,则点C的坐标是    ,⊙C的半径是    ;
    ②y轴正半轴上是否有线段AB的“完美点”?如果有,求出“完美点”的坐标;如果没有,请说明理由;
    (2)若点P在y轴负半轴上运动,则当∠APB的度数最大时,点P的坐标为    .

    -参考答案-
    一、单选题
    1、C
    【解析】
    【分析】
    根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.
    【详解】
    解:∵CD是⊙O的切线,
    ∴∠CDO=90°,
    ∵∠C=40°,
    ∴∠COD=90°-40°=50°,
    ∵OD=OB,
    ∴∠B=∠ODB,
    ∵∠COD=∠B+∠ODB,
    ∴∠B=∠COD=25°,
    故选:C.
    【点睛】
    本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.
    2、B
    【解析】
    【分析】
    根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
    【详解】
    解:∵点O是△ABC的内心,
    ∴OB平分∠ABC,OC平分∠ACB,
    ∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
    ∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
    故选B.
    【点睛】
    本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
    3、B
    【解析】
    【分析】
    连接OB,根据切线性质得∠ABO=90°,再根据圆周角定理求得∠AOB=60°,进而求得∠A=30°,然后根据含30°角的直角三角形的性质解答即可.
    【详解】
    解:连接OB,
    ∵AB与相切于点B,
    ∴∠ABO=90°,
    ∵∠BDC=30°,
    ∴∠AOB=2∠BDC=60°,
    在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,
    ∴OA=2OB=4,
    ∴,
    故选:B.

    【点睛】
    本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.
    4、B
    【解析】
    【分析】
    连接DG、AG,作GH⊥AD于H,连接OD,如图,先确定AG=DG,则GH垂直平分AD,则可判断点O在HG上,再根据HG⊥BC可判定BC与圆O相切;接着利用OG=OD可判断圆心O不是AC与BD的交点;然后根据四边形AEFD为⊙O的内接矩形可判断AF与DE的交点是圆O的圆心.
    【详解】
    解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
    ∵G是BC的中点,
    ∴CG=BG,
    ∵CD=BA,根据勾股定理可得,
    ∴AG=DG,
    ∴GH垂直平分AD,
    ∴点O在HG上,
    ∵AD∥BC,
    ∴HG⊥BC,
    ∴BC与圆O相切;
    ∵OG=OD,
    ∴点O不是HG的中点,
    ∴圆心O不是AC与BD的交点;
    ∵∠ADF=∠DAE=90°,
    ∴∠AEF=90°,
    ∴四边形AEFD为⊙O的内接矩形,
    ∴AF与DE的交点是圆O的圆心;AE=DF;
    ∴(1)错误,(2)(3)(4)正确.
    故选:B.

    【点睛】
    本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了矩形的性质和三角形外心.
    5、B
    【解析】
    【分析】
    连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
    【详解】
    解:如图,连接OC,OD.

    ∵五边形ABCDE是正五边形,
    ∴∠COD==72°,
    ∴∠CPD=∠COD=36°,
    故选:B
    【点睛】
    本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    6、B
    【解析】
    【分析】
    求出正五边形的一个内角的度数,再根据等腰三角形的性质和三角形的内角和定理计算即可.
    【详解】
    解:∵正五边形ABCDE中,
    ∴∠BCD==108°,CB=CD,
    ∴∠CBD=∠CDB=(180°-108°)=36°,
    故选:B.
    【点睛】
    本题考查了正多边形和圆,求出正五边形的一个内角度数是解决问题的关键.
    7、A
    【解析】
    【分析】
    直接根据直线与圆的位置关系即可得出结论.
    【详解】
    解:∵⊙O的半径为6,直线m上有一动点P,OP=4,
    ∴直线与⊙O相交.
    故选:A.
    【点睛】
    本题考查的是直线与圆的位置关系,熟知⊙O的半径为r,圆心O到直线l的距离为d,当d=r时,直线l和⊙O相切是解答此题的关键.
    8、A
    【解析】
    【分析】
    首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.
    【详解】
    解:∵△ABC的外心即是三角形三边垂直平分线的交点,
    如图所示:EF与MN的交点O′即为所求的△ABC的外心,
    ∴△ABC的外心坐标是(﹣2,﹣1).
    故选:A

    【点睛】
    此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.
    9、B
    【解析】
    【分析】
    连接EO,延长EO交CD于F,连接DO,设半径为x.构建方程即可解决问题.
    【详解】
    解:设⊙O与AB相切于点E.连接EO,延长EO交CD于F,连接DO,
    再设⊙O的半径为x.

    ∵AB切⊙O于E,
    ∴EF⊥AB,
    ∵AB∥CD,
    ∴EF⊥CD,
    ∴∠OFD=90°,
    在Rt△DOF中,∵∠OFD=90°,OF2+DF2=OD2,
    ∴(8-x)2+42= x2,
    ∴x=5,
    ∴⊙O的半径为5.
    故选:B.
    【点睛】
    本题考查了切线的性质、正方形的性质、垂径定理、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.
    10、A
    【解析】
    【分析】
    点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.
    【详解】
    解:∵⊙O的半径为4,点P 在⊙O外部,
    ∴OP需要满足的条件是OP>4,
    故选:A.
    【点睛】
    此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
    二、填空题
    1、76
    【解析】
    【分析】
    连接OA、OB,根据圆周角定理求得∠AOB,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案
    【详解】
    解:连接OA、OB,,

    ∴∠AOB=104°
    ∵PA、PB是⊙O的两条切线,点A、B为切点,
    ∴∠OAP=∠OBP=90°
    ∵∠APB+∠OAP+∠AOB+∠OBP=360°
    ∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°
    故答案为:76
    【点睛】
    本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键
    2、30°##30度
    【解析】
    【分析】
    连接OC,如图,利用切线的性质得到∠BCO=90°,再由CA=CB得到∠B=∠A,利用圆周角定理得到∠BOC=2∠A,则可根据三角形内角和计算出∠B=30°.
    【详解】
    解:连接OC,如图,

    ∵⊙O与BC相切于点C,
    ∴OC⊥BC,
    ∴∠BCO=90°,
    ∵CA=CB,
    ∴∠B=∠A,
    ∵∠BOC=2∠A,
    而∠B+∠BOC=90°,
    ∴∠B+2∠B=90°,解得∠B=30°,
    故答案为:30°.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰三角形的性质和圆周角定理.
    3、5或3##3或5
    【解析】
    【分析】
    分点P在圆内或圆外进行讨论.
    【详解】
    解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;
    ②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;
    综上所述:⊙O的半径长为 5cm或3cm.
    故答案为:5或3.
    【点睛】
    本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
    4、点在圆内
    【解析】
    【分析】
    比较点到圆心的距离d与半径r的大小关系;当时,点在圆外;当时,点在圆上;当时,点在圆内;求值后进行判断即可.
    【详解】
    解:的半径为,点A到圆心的距离为

    点A与的位置关系是:点A在圆内
    故答案为:点A在圆内.
    【点睛】
    本题考查了点与圆的位置关系.解题的关键在于比较点到圆心的距离d与半径r的大小关系.
    5、
    【解析】
    【分析】
    如图,根据四边形CDEF为正方形,可得∠D=90°,CD=DE,从而得到CE是直径,∠ECD=45°,然后利用勾股定理,即可求解.
    【详解】
    解:如图,

    ∵四边形CDEF为正方形,
    ∴∠D=90°,CD=DE,
    ∴CE是直径,∠ECD=45°,
    根据题意得:AB=2.5, ,
    ∴ ,
    ∴ ,
    即此斛底面的正方形的边长为 尺.
    故答案为:
    【点睛】
    本题主要考查了圆内接四边形,勾股定理,熟练掌握圆内接四边形的性质,勾股定理是解题的关键.
    三、解答题
    1、 (1)相切,理由见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据角平分线的性质与角的等量代换易得∠ODE=90°,而D是圆上的一点;故可得直线DE与⊙O相切;
    (2)连接BD,根据勾股定理得到AD==2,根据圆周角定理得到∠ADB=90°,根据相似三角形的性质列方程得到AB=5,即可求解.
    (1)
    解:所在直线与相切.
    理由:连接.

    ∵,
    ∴.
    ∵平分,
    ∴.
    ∴.
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∴.
    ∵是半径,
    ∴所在直线与相切.
    (2)
    解:连接.
    ∵是的直径,
    ∴.
    ∴.
    又∵,
    ∴.
    ∴.
    ∵,,,
    ∴.
    ∴.
    ∴的半径为.
    【点睛】
    本题考查的是直线与圆的位置关系,相似三角形的判定和性质及勾股定理,正确的作出辅助线是解题的关键.
    2、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)根据切线的判定方法,证出即可;
    (2)由勾股定理得,,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.
    (1)
    解:如图,连接OB,

    ∵AB是的切线,
    ∴,即,
    ∵BC是弦,,
    ∴,
    ∴,在和中,,
    ∴,
    ∴,即,
    ∴AC是的切线;
    (2)
    解:在中,
    由勾股定理得,,,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.
    3、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;
    (2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.
    (1)
    证明:如图所示,连接OC,

    ∵AB是的直径,直线l与相切于点A,
    ∴,
    ∵,,
    ∴,,
    ∴,
    ∴,
    ∴直线DC是的切线.
    (2)
    解:∵,
    ∴,
    又∵,
    ∴是等边三角形,
    ∴,
    在中,,
    ∴,
    ∴,
    ∴,
    ∴阴影部分的面积=.
    【点睛】
    本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.
    4、 (1)见解析
    (2)
    【解析】
    【分析】
    (1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
    (2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
    (1)
    证明:连接OD,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分∠CAM,∠OAD=∠DAE,
    ∴∠ODA=∠DAE,
    ∴DO∥MN,
    ∵DE⊥MN,
    ∴DE⊥OD,
    ∵D在⊙O上,
    ∴DE是⊙O的切线;
    (2)
    解:∵∠AED=90°,DE=8,AE=6,
    ∴AD==10,
    连接CD,∵AC是⊙O的直径,
    ∴∠ADC=∠AED=90°,
    ∵∠CAD=∠DAE,
    ∴△ACD∽△ADE,
    ∴,即,
    ∴AC=,
    ∴⊙O的半径是.

    【点睛】
    本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
    5、 (1)①(4,3)或C(4,−3),,②,
    (2)
    【解析】
    【分析】
    (1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
    (2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
    (1)
    ①如图1中,

    在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
    圆心C的坐标为(4,3),半径为3,
    根据对称性可知点C(4,−3)也满足条件,
    故答案是:(4,3)或C(4,−3),,
    ②y轴的正半轴上存在线段AB的“等角点”。
    如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,

    ∵⊙C的半径,
    ∴⊙C与y轴相交,
    设交点为,,此时,在y轴的正半轴上,
    连接、、CA,则==CA =r=3,
    ∵CD⊥y轴,CD=4,,
    ∴,
    ∴,;
    当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
    故答案为:,
    (2)
    当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
    如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
    如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
    连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,

    ∵点P,点N在⊙E上,
    ∴∠APB=∠ANB,
    ∵∠ANB是△MAN的外角,
    ∴∠ANB>∠AMB,
    即∠APB>∠AMB,
    此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
    ∵⊙E与y轴相切于点P,则EP⊥y轴,
    ∴四边形OPEF是矩形,OP=EF,PE=OF=4,
    ∴⊙E的半径为4,即EA=4,
    ∴在Rt△AEF中,,
    ∴,
    即 .
    故答案为:
    【点睛】
    本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.

    相关试卷

    初中冀教版第29章 直线与圆的位置关系综合与测试精品当堂检测题: 这是一份初中冀教版第29章 直线与圆的位置关系综合与测试精品当堂检测题,共29页。试卷主要包含了下列说法正确的是等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题,共35页。试卷主要包含了如图,A,下列四个命题中,真命题是等内容,欢迎下载使用。

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课堂检测: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀课堂检测,共35页。试卷主要包含了如图所示,在的网格中,A,在中,,,给出条件等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map