![2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题(含详解)01](http://www.enxinlong.com/img-preview/2/3/12721651/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题(含详解)02](http://www.enxinlong.com/img-preview/2/3/12721651/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系综合训练试题(含详解)03](http://www.enxinlong.com/img-preview/2/3/12721651/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习题
展开九年级数学下册第二十九章直线与圆的位置关系综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,与相切于点,经过的圆心与交于,若,则( )
A. B. C. D.
2、若正方形的边长为4,则它的外接圆的半径为( )
A. B.4 C. D.2
3、如图,FA、FB分别与⊙O相切于A、B两点,点C为劣弧AB上一点,过点C的切线分别交FA、FB于D、E两点,若∠F=60°,△FDE的周长为12,则⊙O的半径长为( )
A. B.2 C.2 D.3
4、矩形ABCD中,AB=8,BC=4,点P在边AB上,且AP=3,如果⊙P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( )
A.点B、C均在⊙P内 B.点B在⊙P上、点C在⊙P内
C.点B、C均在⊙P外 D.点B在⊙P上、点C在⊙P外
5、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )
A.2,2 B.4,4 C.4,2 D.4,
6、如图,AB为⊙O的切线,切点为A,连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
7、如图,一把直尺,60°的直角三角板和一个量角器如图摆放,A为60°角与刻度尺交点,刻度尺上数字为4,点B为量角器与刻度尺的接触点,刻度为7,则该量角器的直径是( )
A.3 B. C.6 D.
8、如图,BE是⊙O的直径,点A和点D是⊙O上的两点,过点A作的切线交BE延长线于点C,若∠ADE=36°,则∠C的度数是( )
A.18° B.28° C.36° D.45°
9、如图,BD是⊙O的切线,∠BCE=30°,则∠D=( )
A.40° B.50° C.60° D.30°
10、如图,BE是的直径,点A和点D是上的两点,过点A作的切线交BE延长线于点C,若,则的度数是( )
A.18° B.28° C.36° D.45°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在下图中,是的直径,要使得直线是的切线,需要添加的一个条件是________.(写一个条件即可)
2、如图,PA,PB是的切线,切点分别为A,B.若,,则AB的长为______.
3、边长为2的正三角形的外接圆的半径等于___.
4、两直角边分别为6、8,那么的内接圆的半径为____________.
5、如图,在△ABC中,I是△ABC的内心,O是AB边上一点,⊙O经过点B且与AI相切于点I,若tan∠BAC=,则sin∠ACB的值为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.
(1)求证是的切线;
(2)若,,求的半径.
2、如图,已知AB是⊙P的直径,点在⊙P上,为⊙P外一点,且∠ADC=90°,2∠B+∠DAB=180°
(1)试说明:直线为⊙P的切线.
(2)若∠B=30°,AD=2,求CD的长.
3、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
4、如图,PA,PB是圆的切线,A,B为切点.
(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,延长AO交射线PB于C点,若AC=4,PA=3,请补全图形,并求⊙O的半径.
5、如图,在中,,⊙O是的外接圆,过点C作,交⊙O于点D,连接AD交BC于点E,延长DC至点F,使,连接AF.
(1)求证:;
(2)求证:AF是⊙O的切线.
-参考答案-
一、单选题
1、B
【解析】
【分析】
连结CO,根据切线性质与相切于点,得出OC⊥BC,根据直角三角形两锐角互余∠COB=90°-∠B=90°-40°=50°,然后利用圆周角定理即可.
【详解】
解:连结CO,
∵与相切于点,
∴OC⊥BC,
∴∠COB+∠B=90°,
∵,
∴∠COB=90°-∠B=90°-40°=50°,
∴.
故选B.
【点睛】
本题考查圆的切线性质,直角三角形两锐角互余性质,圆周角定理,掌握圆的切线性质,直角三角形两锐角互余性质,圆周角定理是解题关键.
2、C
【解析】
【分析】
根据圆内接正多边形的性质可得正方形的中心即圆心,进而可知正方形的对角线即为圆的直径,根据勾股定理求得正方形对角线的长度即可求得它的外接圆的半径.
【详解】
解:∵四边形是正方形,
∴的交点即为它的外接圆的圆心,
故选C
【点睛】
本题考查了圆内接正多边形的性质,勾股定理,理解正方形的对角线即为圆的直径是解题的关键.
3、C
【解析】
【分析】
根据切线长定理可得,、、,再根据∠F=60°,可知为等边三角形,,再△FDE的周长为12,可得,求得,再作,即可求解.
【详解】
解:FA、FB分别与⊙O相切于A、B两点,过点C的切线分别交FA、FB于D、E两点,
则:、、,,
∵∠F=60°,
∴为等边三角形,,
∵△FDE的周长为12,即,
∴,即,
作,如下图:
则,,
∴,
设,则,由勾股定理可得:,
解得,,
故选C
【点睛】
此题考查了圆的有关性质,切线的性质、切线长定理,垂径定理以及等边三角形的判定与性质,解题的关键是灵活运用相关性质进行求解.
4、D
【解析】
【分析】
如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案.
【详解】
解:如图所示,连接DP,CP,
∵四边形ABCD是矩形,
∴∠A=∠B=90°,
∵AP=3,AB=8,
∴BP=AB-AP=5,
∵,
∴PB=PD,
∴,
∴点C在圆P外,点B在圆P上,
故选D.
【点睛】
本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键.
5、B
【解析】
【分析】
根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.
【详解】
解:如图,
∵正六边形的任一内角为120°,
∴∠ABD=180°-120°=60°,
∴∠BAD=30°,为等边三角形,
∵
∴
∴
∴
∴这个正六边形半径R和扳手的开口a的值分别是4,4.
故选:B.
【点睛】
本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.
6、D
【解析】
【分析】
由切线的性质得出∠OAB=90°,由直角三角形的性质得出∠AOB=90°-∠ABO=54°,由等腰三角形的性质得出∠ADC=∠OAD,再由三角形的外角性质即可得出答案.
【详解】
解:∵AB为⊙O的切线,
∴∠OAB=90°,
∵∠ABO=36°,
∴∠AOB=90°﹣∠ABO=54°,
∵OA=OD,
∴∠ADC=∠OAD,
∵∠AOB=∠ADC+∠OAD,
∴∠ADC=∠AOB=27°;
故选:D.
【点睛】
本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键.
7、D
【解析】
【分析】
如图所示,连接OA,OB,OC,利用切线定理可知△AOC与△AOB为直角三角形,进而可证明Rt△AOC≌Rt△AOB,根据三角板的角度可算出∠OAB的度数,借助三角函数求出OB的长度.
【详解】
解:如图所示,连接OA,OB,OC,
∵三角板的顶角为60°,
∴∠CAB=120°,
∵AC,AB,与扇形分别交于一点,
∴AC,AB是扇形O所在圆的切线,
∴OC⊥AC,OB⊥AB,
在Rt△AOC与Rt△AOB中,
∴Rt△AOC≌Rt△AOB,
∴∠OAC=∠OAB=60°,
由题可知AB=7-4=3,
∴OB=AB•tan60°= ,
∴直径为,
故选:D.
【点睛】
本题考查,圆的切线定理,全等三角形的判定,三角函数,在图中构造适合的辅助线是解决本题的关键.
8、A
【解析】
【分析】
连接OA,DE,利用切线的性质和角之间的关系解答即可.
【详解】
解:连接OA,DE,如图,
∵AC是的切线,OA是的半径,
∴OAAC
∠OAC=90°
∠ADE=36°
AOE=2∠ADE=72°
∠C=90°-∠AOE=90°-72°=18°
故选:A.
【点睛】
本题考查了圆周角定理,切线的性质,能求出∠OAC和∠AOC是解题的关键.
9、D
【解析】
【分析】
连接,根据同弧所对的圆周角相等,等角对等边,三角形的外角性质可得,根据切线的性质可得,根据直角三角形的两个锐角互余即可求得.
【详解】
解:连接
BD是⊙O的切线
故选D
【点睛】
本题考查了切线的性质,等弧所对的圆周角相等,直角三角形的两锐角互余,掌握切线的性质是解题的关键.
10、A
【解析】
【分析】
连接,根据同弧所对的圆周角相等可得,根据圆周角定理可得,根据切线的性质以及直角三角形的两锐角互余即可求得的度数.
【详解】
解:如图,连接
,
是的切线
故选A
【点睛】
本题考查了切线的性质,圆周角定理,求得的度数是解题的关键.
二、填空题
1、∠ABT=∠ATB=45°(答案不唯一)
【解析】
【分析】
根据切线的判定条件,只需要得到∠BAT=90°即可求解,因此只需要添加条件:∠ABT=∠ATB=45°即可.
【详解】
解:添加条件:∠ABT=∠ATB=45°,
∵∠ABT=∠ATB=45°,
∴∠BAT=90°,
又∵AB是圆O的直径,
∴AT是圆O的切线,
故答案为:∠ABT=∠ATB=45°(答案不唯一).
【点睛】
本题主要考查了圆切线的判定,三角形内角和定理,熟知圆切线的判定条件是解题的关键.
2、3
【解析】
【分析】
由切线长定理和,可得为等边三角形,则.
【详解】
解:连接,如下图:
,分别为的切线,
,
为等腰三角形,
,
,
为等边三角形,
,
,
.
故答案为:3.
【点睛】
本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.
3、
【解析】
【分析】
过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.
【详解】
如图所示,是正三角形,故O是的中心,,
∵正三角形的边长为2,OE⊥AB
∴,,
∴,
由勾股定理得:,
∴,
∴,
∴(负值舍去).
故答案为:.
【点睛】
本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.
4、5
【解析】
【分析】
直角三角形外接圆的直径是斜边的长.
【详解】
解:由勾股定理得:AB==10,
∵∠ACB=90°,
∴AB是⊙O的直径,
∴这个三角形的外接圆直径是10,
∴这个三角形的外接圆半径长为5,
故答案为:5.
【点睛】
本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.
5、##0.8
【解析】
【分析】
连接OI,BI,作OE⊥AC,可证△AOD是等腰三角形,然后证明OD∥BC,进而∠ADO=∠ACB,解三角形AOD即可.
【详解】
解:如图,连接OI并延长交AC于D,连接BI,
∵AI与⊙O相切,
∴AI⊥OD,
∴∠AIO=∠AID=90°,
∵I是△ABC的内心,
∴∠OAI=∠DAI,∠ABI=∠CBI,
∵AI=AI,
∴△AOI≌△ADI(ASA),
∴AO=AD,
∵OB=OI,
∴∠OBI=∠OIB,
∴∠OIB=∠CBI,
∴OD∥BC,
∴∠ADO=∠C,
作OE⊥AC于E,
∵tan∠BAC==,
∴不妨设OE=24k,AE=7k,
∴OA=AD=25k,
∴DE=AD﹣AE=18k,
∴OD==30k,
∴sin∠ACB=== .
故答案是:
【点睛】
本题主要考查了切线的性质,锐角三角函数,等腰三角形的性质和判定,全等三角形的判定和性质等知识,熟练掌握相关知识点是解题的关键.
三、解答题
1、 (1)见解析
(2)
【解析】
【分析】
(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;
(2)证明,利用相似三角形的性质可求的半径.
(1)
证明:连接,
∵,
∴,
∴是直径,是的中点.
∵平分,
∴,
∵,
∴,
∴,
∴.
又∵,
∴,
∴,
又∵经过半径的外端,
∴是的切线.
(2)
解:∵,
∴,
在与中,
,,
∴.
∴,
在中,,,
∴.
设半径为,则,,
即,
∴.
∴的半径为.
【点睛】
本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
3、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
4、 (1)见解析;
(2)见解析,的半径为
【解析】
【分析】
(1)过点B作BP的垂线,作∠APB的平分线,二线的交点就是圆心;
(2)根据切线的性质,利用勾股定理,建立一元一次方程求解即可.
(1)
如图所示,点O即为所求
(2)
如图,∵PA是圆的切线,AO是半径,PB是圆的切线,
∴∠CAP=90°,PA=PB=3,∠CBO=90°,
∵AC=4,
∴PC==5,BC=5-3=2,
设圆的半径为x,则OC=4-x,
∴,
解得x=,
故圆的半径为.
【点睛】
本题考查了垂线的画法,角的平分线的画法,切线的性质,切线长定理,勾股定理,一元一次方程的解法,熟练掌握切线的性质,切线长定理和勾股定理是解题的关键.
5、 (1)见解析;
(2)见解析
【解析】
【分析】
(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;
(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证.
(1)
解:∵,
∴,
又∵,
∴,
∴ ;
(2)
解:如图,连接OA,
∵,
∴,
∴,
∵,
∴,
∴,
∵已知,
∴,
∴,
∴,
∴,
∴AF为⊙O的切线.
【点睛】
本题考查了圆周角定理、垂径定理推论、切线的判定、平行线的判定和性质,熟练掌握切线的判定定理是解题的关键.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习,共32页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。
冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习题,共30页。
2020-2021学年第29章 直线与圆的位置关系综合与测试精品达标测试: 这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品达标测试,共35页。试卷主要包含了下面四个结论正确的是,如图,,如图,PA等内容,欢迎下载使用。