冀教版九年级下册第29章 直线与圆的位置关系综合与测试练习
展开九年级数学下册第二十九章直线与圆的位置关系难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,PA、PB是的切线,A、B为切点,连接OB、AB,若,则的度数为( )
A.50° B.55° C.65° D.70°
2、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是( )
A.2cm B.2.4cm C.3cm D.3.5cm
3、如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是( )
A.30° B.36° C.45° D.72°
4、已知半径为5的圆,直线l上一点到圆心的距离是5,则直线和圆的位置关系为( )
A.相切 B.相离 C.相切或相交 D.相切或相离
5、如图,已知AB是的直径,C是AB延长线上一点,CE是的切线,切点为D,过点A作于点E,交于点F,连接OD、AD、BF.则下列结论不一定正确的是( )
A. B.AD平分 C. D.
6、下列四个命题中,真命题是( )
A.相等的圆心角所对的两条弦相等 B.三角形的内心是到三角形三边距离相等的点
C.平分弦的直径一定垂直于这条弦 D.等弧就是长度相等的弧
7、直角三角形的外接圆半径为3,内切圆半径为1,则该直角三角形的周长是( )
A.12 B.14 C.16 D.18
8、如图,直线交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是( )
A. B.
C.或 D.(﹣2,0)或(﹣5,0)
9、如图,、是的切线,、是切点,点在上,且,则等于( )
A.54° B.58° C.64° D.68°
10、如图,AB是⊙O的直径,点D在⊙O上,连接OD、BD,过点D作⊙O的切线交BA延长线于点C,若∠C=40°,则∠B的度数为( )
A.15° B.20° C.25° D.30°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.
2、若⊙O的半径为3cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是:点A在⊙O_______.(填“上”、“内”、“外”)
3、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,,则图中阴影部分的面积为________.
4、在中,,,D,E分别是,的中点,若等腰绕点A逆时针旋转,得到等腰,记直线与的交点为P,则点P到所在直线的距离的最大值为________.
5、如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°.则∠APB=________度;
三、解答题(5小题,每小题10分,共计50分)
1、如图,中,.
(1)用直尺和圆规作,使圆心在边上,且与、所在直线相切(不写作法,保留作图痕迹);
(2)在(1)的条件下,再从以下两个条件①“,的周长为12cm;②,”中选择一个作为条件,并求的半径.
2、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=8,AE=6,求⊙O的半径.
3、如图,点E是的内心,AE的延长线交BC于点F,交的外接圆点D.过D作直线.
(1)求证:DM是的切线;
(2)求证:;
(3)若,,求的半径.
4、苏科版教材八年级下册第94页第19题,小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.
【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm的正方形ABCD中,点E从点A出发,沿边AD向点D运动,同时,点F从点B出发,沿边BA向点A运动,它们的运动速度都是2cm/s,当点E运动到点D时,两点同时停止运动,连接CF、BE交于点M,设点E, F运动时问为t秒.
(1)【问题提出】如图1,点E,F分别在方形ABCD中的边AD、AB上,且,连接BE、CF交于点M,求证:.请你先帮小明加以证明.
(2)如图1,在点E、F的运动过程中,点M也随之运动,请直接写出点M的运动路径长 cm.
(3)如图2,连接CE,在点E、F的运动过程中.
①试说明点D在△CME的外接圆O上;
②若①中的O与正方形的各边共有6个交点,请直接写出t的取值范围.
5、如图,是的切线,点在上,与相交于,是的直径,连接,若.
(1)求证:平分;
(2)当,时,求的半径长.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据切线的性质得出PA=PB,∠PBO=90°,再根据三角形内角和定理求解即可.
【详解】
∵PA、PB是⊙O的切线,
∴PA=PB,∠OBP=90°,
又∵∠ABO=25°,
∴∠PBA=90°-25°=65°=∠PAB,
∴∠P=180°-65°-65°=50°,
故选:A.
【点睛】
本题考查切线的性质,三角形内角和定理,掌握切线的性质和等腰三角形的性质,三角形内角和为180°是解题的关键.
2、B
【解析】
【分析】
如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.
【详解】
解:如图所示,过C作CD⊥AB,交AB于点D,
在Rt△ABC中,AC=3cm,BC=4cm,
根据勾股定理得:AB==5(cm),
∵S△ABC=BC•AC=AB•CD,
∴×3×4=×10×CD,
解得:CD=2.4,
则r=2.4(cm).
故选:B.
【点睛】
此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.
3、B
【解析】
【分析】
连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;
【详解】
解:如图,连接OC,OD.
∵五边形ABCDE是正五边形,
∴∠COD==72°,
∴∠CPD=∠COD=36°,
故选:B
【点睛】
本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
4、C
【解析】
【分析】
根据若直线上一点到圆心的距离等于圆的半径,则圆心到直线的距离等于或小于圆的半径,此时直线和圆相交或相切.
【详解】
解:∵半径为5的圆,直线l上一点到圆心的距离是5,
∴圆心到直线的距离等于或小于5,
∴直线和圆的位置关系为相交或相切,
故选:C.
【点睛】
本题考查了直线和圆的位置关系,判断的依据是半径和直线到圆心的距离的大小关系:设⊙O的半径为r,圆心O到直线l的距离为d,①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.
5、D
【解析】
【分析】
根据直径所对的圆周角是直角,切线的性质即可判断A选项;根据,,进而即可判断B选项;设交于点,证明四边形是矩形,由垂径定理可得,进而可得进而判断C选项;无法判断D选项.
【详解】
解:∵AB是的直径,
∴
∵CE是的切线,切点为D,
∴
,故A选项正确,
,
即AD平分,故B选项正确,
设交于点,如图,
∵,
∴四边形是矩形
,
,故C选项正确
若,则
由于点不一定是的中点,故D选项不正确;
故选D
【点睛】
本题考查了直径所对的圆周角是直角,垂径定理,切线的性质,矩形的判定,掌握圆的相关知识是解题的关键.
6、B
【解析】
【分析】
利用圆的有关性质及定理、三角形的内心的性质、垂径定理等知识分别判断后即可确定正确的选项.
【详解】
解:A、同圆或等圆中,相等的圆心角所对的两条弦相等,则原命题是假命题,故本选项不符合题意;
B、三角形的内心是到三角形三边距离相等的点,是真命题,故本选项符合题意;
C、平分弦(不是直径)的直径一定垂直于这条弦,则原命题是假命题,故本选项不符合题意;
D、等弧是能够完全重合的弧,长度相等的弧不一定是等弧,则原命题是假命题,故本选项不符合题意;
故选:B
【点睛】
本题主要考查了命题与定理的知识,解题的关键是了解圆的有关性质及定理、三角形的内心的性质、垂径定理等知识,难度不大.
7、B
【解析】
【分析】
⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,得出正方形CDIF推出CD=CF=1,根据切线长定理得出AD=AE,BE=BF,CF=CD,求出AD+BF=AE+BE=AB=6,即可求出答案.
【详解】
解:如图,⊙I切AB于E,切BC于F,切AC于D,连接IE,IF,ID,
则∠CDI=∠C=∠CFI=90°,ID=IF=1,
∴四边形CDIF是正方形,
∴CD=CF=1,
由切线长定理得:AD=AE,BE=BF,CF=CD,
∵直角三角形的外接圆半径为3,内切圆半径为1,
∴AB=6=AE+BE=BF+AD,
即△ABC的周长是AC+BC+AB=AD+CD+CF+BF+AB=6+1+1+6=14,
故选:B.
【点睛】
本题考查了直角三角形的外接圆与内切圆,正方形的性质和判定,切线的性质,切线长定理等知识点的综合运用.
8、C
【解析】
【分析】
由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.
【详解】
解:∵直线交x轴于点A,交y轴于点B,
∴令x=0,得y=-3,令y=0,得x=-4,
∴A(-4,0),B(0,-3),
∴OA=4,OB=3,
∴AB=5,
设⊙P与直线AB相切于D,
连接PD,
则PD⊥AB,PD=1,
∵∠ADP=∠AOB=90°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP= ,
∴OP= 或OP= ,
∴P或P,
故选:C.
【点睛】
本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.
9、C
【解析】
【分析】
连接,,根据圆周角定理可得,根据切线性质以及四边形内角和性质,求解即可.
【详解】
解:连接,,如下图:
∴
∵PA、PB是的切线,A、B是切点
∴
∴由四边形的内角和可得:
故选C.
【点睛】
此题考查了圆周角定理,切线的性质以及四边形内角和的性质,解题的关键是熟练掌握相关基本性质.
10、C
【解析】
【分析】
根据切线的性质得到∠CDO=90°,求得∠COD=90°-40°=50°,根据等腰三角形的性质和三角形外角的性质即可得到结论.
【详解】
解:∵CD是⊙O的切线,
∴∠CDO=90°,
∵∠C=40°,
∴∠COD=90°-40°=50°,
∵OD=OB,
∴∠B=∠ODB,
∵∠COD=∠B+∠ODB,
∴∠B=∠COD=25°,
故选:C.
【点睛】
本题考查了切线的性质,圆周角定理,三角形外角的性质,等腰三角形的性质,熟练掌握切线的性质是解题的关键.
二、填空题
1、15##十五
【解析】
【分析】
根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.
【详解】
解:如图,设正多边形的外接圆为⊙O,连接OA,OB,
∵∠ADB=12°,
∴∠AOB=2∠ADB=24°,
而360°÷24°=15,
∴这个正多边形为正十五边形,
故答案为:15.
【点睛】
本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.
2、外
【解析】
【分析】
点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.据此作答.
【详解】
解:∵⊙O的半径为3cm,点A到圆心O的距离OA为4cm,
即点A到圆心的距离大于圆的半径,
∴点A在⊙O外.
故答案为:外.
【点睛】
本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
3、
【解析】
【分析】
由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积
【详解】
解:∵正六边形ABCDEF的边长为2,
=120°,
∵∠ABC+∠BAC+∠BCA=180°,
∴∠BAC=(180°-∠ABC)=×(180°-120°)=30°,
过B作BH⊥AC于H,
∴AH=CH,BH=AB=×2=1,
在Rt△ABH中,
AH= =,
∴AC=2 ,
同理可证,∠EAF=30°,
∴∠CAE=∠BAF-∠BAC-∠EAF=120°-30°-30°=60°,
∴
∴图中阴影部分的面积为2π,
故答案为:.
【点睛】
本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.
4、##
【解析】
【分析】
首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.
【详解】
解:如图,作PG⊥AB,交AB所在直线于点G,
∵D1,E1在以A为圆心,AD为半径的圆上,
当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,
此时四边形AD1PE1是正方形,
∵∠CAB=90°,AC=AB=4,D,E分别是AB,AC的中点,
∴AD=AE1=AD1=PD1=2,
则BD1=,
故∠ABP=30°,
则PB=2+2,
∴PG=PB=,
故点P到AB所在直线的距离的最大值为:PG=.
故答案为:.
【点睛】
本题主要考查了旋转的性质以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.
5、60
【解析】
【分析】
先根据圆的切线的性质可得,从而可得,再根据切线长定理可得,然后根据等边三角形的判定与性质即可得.
【详解】
解:是的切线,
,
,
,
,
是等边三角形,
,
故答案为:60.
【点睛】
本题考查了圆的切线的性质、切线长定理等知识点,熟练掌握圆的切线的性质是解题关键.
三、解答题
1、 (1)见解析
(2)cm
【解析】
【分析】
(1)作∠ABC的平分线,交AC于点O,再以点O为圆心、OC为半径作圆;
(2)记⊙O与AB的切点为E,连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r,在Rt△AOE中,由AO2=AE2+OE2列出关于r的方程求解即可.
①设AC=3x,AB=5x,用勾股定理表示出BC的长,根据的周长为12cm,列方程求出x,从而可求出三边的长;
②设AC=3x,AB=5x,用勾股定理表示出BC的长,根据,列方程求出x,从而可求出三边的长;
(1)
解:如图,
(2)
解:如图,设与相切于点.连接OE,则OC=OE,BC=BE,设OC=OE=r,则AO=AC-r.
①∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵的周长为12cm,
∴3x+4x+5x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
②∵,∴设AC=3x,AB=5x,
∴BC==4x,
∵,
∴4x=12,
∴x=1,
∴AC=3,AB=5,
∵⊙O 与 AB 、 BC 所在直线相切
∴BE=BC=4,
∴AE=AB-BE=5-4=1,AO=3-r,
在Rt△AOE中,
∵AO2=AE2+OE2,
∴(3-r)2=12+r2,
∴r=;
即⊙O的半径为cm.
【点睛】
本题考查了作图—复杂作图,勾股定理,切线的性质,以及切线长定理,解题的关键是掌握角平分线的尺规作图和性质、切线的性质和切线长定理及勾股定理.
2、 (1)见解析
(2)
【解析】
【分析】
(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;
(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.
(1)
证明:连接OD,
∵OA=OD,
∴∠OAD=∠ODA,
∵AD平分∠CAM,∠OAD=∠DAE,
∴∠ODA=∠DAE,
∴DO∥MN,
∵DE⊥MN,
∴DE⊥OD,
∵D在⊙O上,
∴DE是⊙O的切线;
(2)
解:∵∠AED=90°,DE=8,AE=6,
∴AD==10,
连接CD,∵AC是⊙O的直径,
∴∠ADC=∠AED=90°,
∵∠CAD=∠DAE,
∴△ACD∽△ADE,
∴,即,
∴AC=,
∴⊙O的半径是.
【点睛】
本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.
3、 (1)见解析
(2)见解析
(3)⊙O的半径为5.
【解析】
【分析】
(1)连接OD交BC于H,根据圆周角定理和切线的判定即可证明;
(2)连接BD,由点E是△ABC的内心,得到∠ABE=∠CBE,∠DBC=∠BAD,推出∠BED=∠DBE,根据等角对等边得到BD=DE;
(3)根据垂径定理和勾股定理即可求出结果.
(1)
证明:连接OD交BC于H,如图,
∵点E是△ABC的内心,
∴AD平分∠BAC,
即∠BAD=∠CAD,
∴,
∴OD⊥BC,BH=CH,
∵DM∥BC,
∴OD⊥DM,
∴DM是⊙O的切线;
(2)
证明:∵点E是△ABC的内心,
∴∠ABE=∠CBE,
∵,
∴∠DBC=∠BAD,
∴∠DEB=∠BAD+∠ABE=∠DBC+∠CBE=∠DBE,
即∠BED=∠DBE,
∴BD=DE;
(3)
解:设⊙O的半径为r,
连接OD,OB,如图,
由(1)得OD⊥BC,BH=CH,
∵BC=8,
∴BH=CH=4,
∵DE=2,BD=DE,
∴BD=2,
在Rt△BHD中,BD2=BH2+HD2,
∴(2)2=42+HD2,解得:HD=2,
在Rt△BHO中,
r2=BH2+(r-2)2,解得:r=5.
∴⊙O的半径为5.
【点睛】
本题考查了三角形的内心,切线的判定与性质,三角形的外接圆与外心,圆周角定理,垂径定理,解决本题的关键是综合运用以上知识.
4、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
5、 (1)见解析
(2)的半径长为.
【解析】
【分析】
(1)根据切线的性质,可得,由平行线的性质,等边对等角,等量代换即可得,进而得证;
(2)连接,根据直径所对的圆周角是直角,勾股定理求得,证明列出比例式,代入数值求解可得,进而求得半径
(1)
证明:如图,连接,
∵是的切线,
∴,
∵,
∴,
∴,
∵,
∴,
∴,即平分;
(2)
解:如图,连接,
在中,,,
由勾股定理得:,
∵是的直径,
∴,
∴,
∵,
∴,
∴,即,
解得:,
∴的半径长为.
【点睛】
本题考查了切线的性质,直径所对的圆周角是直角,相似三角形的性质与判定,勾股定理,掌握圆的相关知识以及相似三角形的是解题的关键.
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时作业: 这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品课时作业,共36页。
冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习: 这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品练习,共34页。试卷主要包含了若O是ABC的内心,当时,等内容,欢迎下载使用。
数学九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练: 这是一份数学九年级下册第29章 直线与圆的位置关系综合与测试精品一课一练,共28页。试卷主要包含了如图,A,已知M等内容,欢迎下载使用。