![2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练练习题(含详解)第1页](http://www.enxinlong.com/img-preview/2/3/12721792/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练练习题(含详解)第2页](http://www.enxinlong.com/img-preview/2/3/12721792/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系同步训练练习题(含详解)第3页](http://www.enxinlong.com/img-preview/2/3/12721792/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后作业题
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试课后作业题,共34页。
九年级数学下册第二十九章直线与圆的位置关系同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知⊙O的半径为5,若点P在⊙O内,则OP的长可以是( )A.4 B.5 C.6 D.72、在△ABC中,,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C 与AB的位置关系是( )A.相交 B.相切C.相离 D.不确定3、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )A.不能构成三角形 B.这个三角形是等边三角形C.这个三角形是直角三角形 D.这个三角形是等腰三角形4、一个正多边形的半径与边长相等,则这个正多边形的边数为( )A.4 B.5 C.6 D.85、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为( )A.4m2 B.12m2 C.24m2 D.24m26、如图,是等边三角形的外接圆,若的半径为2,则的面积为( )A. B. C. D.7、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是( )A.2,2 B.4,4 C.4,2 D.4,8、如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=20°,则∠D等于( )A.20° B.30° C.50° D.40°9、如图,与相切于点,连接交于点,点为优弧上一点,连接,,若,的半径,则的长为( )A.4 B. C. D.110、如图,已知的内接正六边形的边心距是,则阴影部分的面积是( ).A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知PA、PB是⊙O的两条切线,点A、点B为切点,线段OP交⊙O于点M.下列结论:①PA=PB;②OP⊥AB;③四边形OAPB有外接圆;④点M是△AOP外接圆的圆心.其中正确的结论是_____(填序号).2、如图,在矩形中,是边上的点,经过,,三点的与相切于点.若,,则的半径是__________.3、如图,AB是⊙O的切线,A为切点,连结OA、OB.若OA=5,AB=6,则tan∠AOB=______.4、如图,、分别与相切于A、B两点,若,则的度数为________.5、已知正三角形的边心距为,则正三角形的边长为______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知是的直径,点在上,点在外.(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中.若,求证:是的切线.2、如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=8,AE=6,求⊙O的半径.3、如图,△ABC内接于⊙O,AB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DC,AB的延长线交于点E.(1)求证:直线DC是⊙O的切线;(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π).4、如图,在中,,平分,与交于点,,垂足为,与交于点,经过,,三点的与交于点.(1)求证是的切线;(2)若,,求的半径.5、如图,在平面直角坐标系中,,的半径为1.如果将线段绕原点逆时针旋转后的对应线段所在的直线与相切,且切点在线段上,那么线段就是⊙C 的“关联线段”,其中满足题意的最小就是线段与的“关联角”.(1)如图1,如果线段是的“关联线段”,那么它的“关联角”为______.(2)如图2,如果、、、、、.那么的“关联线段”有______(填序号,可多选).①线段;②线段;③线段(3)如图3,如果、,线段是的“关联线段”,那么的取值范围是______.(4)如图4,如果点的横坐标为,且存在以为端点,长度为的线段是的“关联线段”,那么的取值范围是______. -参考答案-一、单选题1、A【解析】【分析】根据点与圆的位置关系可得,由此即可得出答案.【详解】解:的半径为5,点在内,,观察四个选项可知,只有选项A符合,故选:A.【点睛】本题考查了点与圆的位置关系,熟练掌握点与圆的位置关系(圆内、圆上、圆外)是解题关键.2、B【解析】【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得⊙C 与AB的位置关系【详解】解:连接,,点O为AB中点.CO为⊙C的半径,是的切线,⊙C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.3、C【解析】【分析】分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.【详解】如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OC,OE,OG,OA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,∴OC=OAcos60°=,OE= OAcos45°=,OG= OAcos30°=,∵,∴这个三角形是直角三角形,故选C.【点睛】本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.4、C【解析】【分析】如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得.【详解】解:如图,由题意得:,是等边三角形,,则这个正多边形的边数为,故选:C.【点睛】本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.5、D【解析】【分析】先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,由题意得:BC=4cm,∵六边形ABCD是正六边形,∴∠BOC=360°÷6=60°,又∵OB=OC,∴△OBC是等边三角形,∴,,∴,∴,∴,故选D.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.6、D【解析】【分析】过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.【详解】解:过点O作OH⊥BC于点H,连接AO,BO,∵△ABC是等边三角形,∴∠ABC=60°,∵O为三角形外心,∴∠OAH=30°,∴OH=OB=1,∴BH=,AH=-AO+OH=2+1=3∴ ∴ 故选:D【点睛】本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.7、B【解析】【分析】根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD=180°-120°=60°, ∴∠BAD=30°,为等边三角形,∵ ∴ ∴ ∴ ∴这个正六边形半径R和扳手的开口a的值分别是4,4.故选:B.【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.8、C【解析】【分析】连接CO利用切线的性质定理得出∠OCD=90°,进而求出∠DOC=40°即可得出答案.【详解】解:连接OC,∵DC切⊙O于点C,∴∠OCD=90°,∵∠A=20°,∴∠OCA=20°,∴∠DOC=40°,∴∠D=90°-40°=50°.故选:C.【点睛】本题主要考查了切线的性质以及三角形外角性质等知识,根据已知得出∠OCD=90°是解题关键.9、B【解析】【分析】连接OB,根据切线性质得∠ABO=90°,再根据圆周角定理求得∠AOB=60°,进而求得∠A=30°,然后根据含30°角的直角三角形的性质解答即可.【详解】解:连接OB,∵AB与相切于点B,∴∠ABO=90°,∵∠BDC=30°,∴∠AOB=2∠BDC=60°,在Rt△ABO中,∠A=90°-60°=30°,OB=OC=2,∴OA=2OB=4,∴,故选:B.【点睛】本题考查切线的性质、圆周角定理、直角三角形的锐角互余、含30°角的直角三角形性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.10、D【解析】【分析】连接正六边形的相邻的两个顶点与圆心,构造扇形和等边三角形,则可得到弓形的面积,阴影部分的面积等于弓形的6倍.【详解】解:连接、,,的内接正六边形,,∴△DOE是等边三角形,∴∠DOM=30°,设,则,解得:,,根据图可得:,,.故选:D.【点睛】本题考查了正多边形与圆及扇形的面积的计算,解题的关键是知道阴影部分的面积等于三个弓形的面积.二、填空题1、①②③【解析】【分析】根据切线长定理判断①,结合等腰三角形的性质判断②,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,可判断③,利用反证法判断④.【详解】解:如图, 是的两条切线, 故①正确, 故②正确, 是的两条切线, 取的中点,连接,则 ∴以为圆心,为半径作圆,则共圆,故③正确, M是外接圆的圆心, 与题干提供的条件不符,故④错误,综上:正确的说法是①②③.故填①②③.【点睛】本题属于圆的综合题,主要考查的是切线长定理、三角形的外接圆、四边形的外接圆等知识点,综合运用圆的相关知识是解答本题的关键.2、##【解析】【分析】连接EO,并延长交圆于点G,在Rt△DEF中求出EF的值,再证明△DEF∽△FGE,然后根据相似三角形的性质即可求解.【详解】解:连接EO,并延长交圆于点G,∵四边形是矩形,∴CD=,∠D=90°,∵与相切于点,∴OE⊥CD,再结合矩形的性质可得:∴DE=CE=3.∵,∴EF=.∵与相切于点,∴∠GED=90°.∵GE是直径,∴∠GFE=90°,∴∠DEF+∠GEF=90°,∠EGF+∠GEF=90°,∴∠DEF=∠EGF.∵∠D=∠∠GFE=90°,∴△DEF∽△FGE,∴,∴,∴GE=,∴的半径是,故答案为;.【点睛】本题考查了矩形的性质,勾股定理,切线的性质,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.3、【解析】【分析】由题意易得∠OAB=90°,然后根据三角函数可进行求解.【详解】解:∵AB是⊙O的切线,∴∠OAB=90°,在Rt△OAB中,OA=5,AB=6,∴,故答案为.【点睛】本题主要考查三角函数与切线的性质,熟练掌握三角函数与切线的性质是解题的关键.4、【解析】【分析】根据已知条件可得出,,再利用圆周角定理得出即可.【详解】解:、分别与相切于、两点,,,,,.故答案为:.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.5、6【解析】【分析】直接利用正三角形的性质得出BO=2DO=2,再由勾股定理求出BD的长即可解决问题.【详解】解:如图所示:连接BO,由题意可得,OD⊥BC,OD=,∠OBD=30°,故BO=2DO=2.BC=2BD由勾股定理得, ∴ 故答案为:6.【点睛】此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.三、解答题1、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.(2)解:连接AD,如图∵为直径∴∵∴∴又∵AB为直径∴AE是的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.2、 (1)见解析(2)【解析】【分析】(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DO∥MN,根据平行线的性质和切线的判定即可证的结论;(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明△ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAM,∠OAD=∠DAE,∴∠ODA=∠DAE,∴DO∥MN,∵DE⊥MN,∴DE⊥OD,∵D在⊙O上, ∴DE是⊙O的切线;(2)解:∵∠AED=90°,DE=8,AE=6,∴AD==10,连接CD,∵AC是⊙O的直径,∴∠ADC=∠AED=90°,∵∠CAD=∠DAE,∴△ACD∽△ADE,∴,即,∴AC=,∴⊙O的半径是.【点睛】本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.3、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,,即可得,则,即可得;(2)根据三角形的外角定理得,又根据得是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.(1)证明:如图所示,连接OC,∵AB是的直径,直线l与相切于点A,∴,∵,,∴,,∴,∴,∴直线DC是的切线.(2)解:∵,∴,又∵,∴是等边三角形,∴,在中,,∴,∴,∴,∴阴影部分的面积=.【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点.4、 (1)见解析(2)【解析】【分析】(1)连接,利用角平分线的定义和等腰三角形的性质可证,从而,得到,根据切线的判定方法可证是的切线;(2)证明,利用相似三角形的性质可求的半径.(1)证明:连接,∵,∴,∴是直径,是的中点.∵平分,∴,∵,∴,∴,∴.又∵,∴,∴,又∵经过半径的外端,∴是的切线.(2)解:∵,∴,在与中,,,∴.∴,在中,,,∴.设半径为,则,,即,∴.∴的半径为.【点睛】本题考查了切线的判定,等腰三角形的性质,平行线的判定与性质,以及相似三角形的判定与性质,掌握切线的判定方法是解(1)的关键,掌握相似三角形的判定与性质是解(2)的关键.5、 (1)(2)②,③(3)(4)【解析】【分析】(1)作OD与相切,此时所得最小,根据切线的性质可得,再由含角的直角三角形的特殊性质可得,再由勾股定理可得OD长度,判断切点在OD上即可得(2)根据勾股定理求出各点与原点的距离与最长切线距离比较即可得;(3)线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,根据题意即可确定t的取值范围,得出线段BD是的“关联线段”;(4)当m取最大值时,M点运动最小半径是O到过点的直线l的距离m,根据题意可得,得出,即为m的最大值;当m取最小值时,作出相应图形,根据题意可得,再由,及点M所在位置,即可确定m的最小值,综合即可得.(1)解:如图所示:作OD与相切, ∴,∵,,∴,∴,∴此时的角度最小,且,∴切点在线段OD上,∴OA的关联角为;(2)解:如图所示:连接,,,,∵,,∴,∴切点不在线段上,不是的“关联线段”;∵,,∴,,∵,∴是的“关联线段”;∵,∴是的“关联线段”;(3)解:,,线段BD绕点O的旋转路线的半径为1的上,当OD与相切时,由(1)可得:,∴当时,线段BD是的“关联线段”,故答案为:;(4)解:如图所示:当m取最大值时,M点运动最小半径是O到过点的直线l的距离是m,∵,,∴,∴,∴m的最大值为4,如图所示:当m取小值时,开始时存在ME与相切,∵,,∴,∵,及点M所在位置,∴,综上可得:,故答案为:.【点睛】题目主要考查直线与圆的位置关系,线段旋转的性质,勾股定理解三角形等,理解题意,作出相应图象是解题关键.
相关试卷
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀练习,共32页。试卷主要包含了在平面直角坐标系中,以点等内容,欢迎下载使用。
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品随堂练习题,共31页。试卷主要包含了已知M,如图,一把宽为2cm的刻度尺等内容,欢迎下载使用。
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试巩固练习,共31页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。