搜索
    上传资料 赚现金
    英语朗读宝

    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(含详解)

    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(含详解)第1页
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(含详解)第2页
    2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专题攻克练习题(含详解)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第29章 直线与圆的位置关系综合与测试巩固练习

    展开

    这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试巩固练习,共31页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。
    九年级数学下册第二十九章直线与圆的位置关系专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、若OABC的内心,当时,       A.130° B.160° C.100° D.110°2、如图,面积为18的正方形ABCD内接于⊙O,则⊙O的半径为(     A. B.C.3 D.3、下面四个结论正确的是(       A.度数相等的弧是等弧 B.三点确定一个圆C.在同圆或等圆中,圆心角是圆周角的2倍 D.三角形的外心到三角形的三个顶点的距离相等4、如图,ABBCCD分别与⊙O相切于EFG三点,且ABCDBO=3,CO=4,则OF的长为(  )A.5 B. C. D.5、如图,中,OAB边上一点,ACBC都相切,若,则的半径为(       A.1 B.2 C. D.6、如图,有一个亭子,它的地基是边长为4m的正六边形,则地基的面积为(  )A.4m2 B.12m2 C.24m2 D.24m27、如图,的切线,是切点,上的点,若,则的度数为(       A. B. C. D.8、如图,正六边形螺帽的边长是4cm,那么这个正六边形半径R和扳手的开口a的值分别是(  )A.2,2 B.4,4 C.4,2 D.4,9、以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则(       A.不能构成三角形 B.这个三角形是等边三角形C.这个三角形是直角三角形 D.这个三角形是等腰三角形10、如图,从⊙O外一点P引圆的两条切线PAPB,切点分别是AB,若∠APB=60°,PA=5,则弦AB的长是(  )A. B. C.5 D.5第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,点均在的正方形网格格点上,过三点的外接圆除经过三点外还能经过的格点数为_________.2、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是______. 3、如图,正方形ABCD的边长为4,点ECD边上一点,连接AE,过点BBGAE于点G,连接CG并延长交AD于点F,则AF的最大值是_______.4、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.5、点P为⊙O外一点,直线PO与⊙O的两个公共点为AB,过点P作⊙O的切线,切点为C,连接AC,若∠CPO=40°,则∠CAB=_____度.三、解答题(5小题,每小题10分,共计50分)1、如图,已知的直径,点上,点外.(1)动手操作:作的角平分线,与圆交于点(要求:尺规作图,不写作法,保留作图痕迹)(2)综合运用,在你所作的图中.若,求证:的切线.2、如图,AB的切线,B为切点,过点B,垂足为点E,交于点C,连接CO,并延长COAB的延长线交于点D,与交于点F,连接AC(1)求证:AC的切线:(2)若半径为2,.求阴影部分的面积.3、如图,直线MN交⊙OAB两点,AC是直径,AD平分∠CAM交⊙OD,过DDEMNE(1)求证:DE是⊙O的切线;(2)若DE=8,AE=6,求⊙O的半径.4、数学课上老师提出问题:“在矩形中,的中点,边上一点,以为圆心,为半径作,当等于多少时,与矩形的边相切?”.小明的思路是:解题应分类讨论,显然不可能与边所在直线相切,只需讨论与边相切两种情形.请你根据小明所画的图形解决下列问题:(1)如图1,当相切于点时,求的长;(2)如图2,当相切时,①求的长;②若点从点出发沿射线移动,连接的中点,则在点的移动过程中,直接写出点内的路径长为______.5、如图,△ABC内接于⊙OAB是⊙O的直径,直线l与⊙O相切于点A,在l上取一点D使得DA=DC,线段DCAB的延长线交于点E(1)求证:直线DC是⊙O的切线;(2)若BC=4,∠CAB=30°,求图中阴影部分的面积(结果保留π). -参考答案-一、单选题1、A【解析】【分析】由三角形内角和以及内心定义计算即可【详解】又∵OABC的内心OBOC角平分线,180°=180°-50°=130°故选:A.【点睛】本题考查了三角形内心的定义,与三角形各边都相切的圆叫做三角形的内切圆.三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2、C【解析】【分析】连接OAOB,则为等腰直角三角形,由正方形面积为18,可求边长为,进而通过勾股定理,可得半径为3.【详解】解:如图,连接OAOB,则OA=OB∵四边形ABCD是正方形,是等腰直角三角形,∵正方形ABCD的面积是18,,即:故选C.【点睛】本题考查了正多边形和圆、正方形的性质等知识,构造等腰直角三角形是解题的关键.3、D【解析】【分析】根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.【详解】解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;D、三角形的外心到三角形的三个顶点的距离相等,故正确;故选D【点睛】本题考查了圆的有关的概念,属于基础知识,必须掌握.4、D【解析】【分析】连接OFOEOG,根据切线的性质及角平分线的判定可得OB平分OC平分,利用平行线的性质及角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得.【详解】解:连接OFOEOGAB、BC、CD分别与相切,,且OB平分OC平分故选:D.【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键.5、D【解析】【分析】ODACDOEBCE,如图,设⊙O的半径为r,根据切线的性质得OD=OE=r,易得四边形ODCE为正方形,则CD=OD=r,再证明ADO∽△ACB,然后利用相似比得到,再根据比例的性质求出r即可.【详解】解:作ODACDOEBCE,如图,设⊙O的半径为r∵⊙OACBC都相切,OD=OE=r而∠C=90°,∴四边形ODCE为正方形,CD=OD=rODBC∴△ADO∽△ACB AF=AC-rBC=3,AC=4,代入可得,r=故选:D【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了相似三角形的判定与性质.6、D【解析】【分析】先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案【详解】解:如图所示,正六边形ABCDEF,连接OBOC,过点OOPBCP由题意得:BC=4cm,∵六边形ABCD是正六边形,∴∠BOC=360°÷6=60°,又∵OB=OC∴△OBC是等边三角形,故选D.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.7、A【解析】【分析】如图,连接先求解 再利用圆周角定理可得,从而可得答案.【详解】解:如图,连接 的切线, 故选A【点睛】本题考查的是三角形的内角和定理,四边形的内角和定理,圆周角定理的应用,圆的切线的性质的应用,理解是解本题的关键.8、B【解析】【分析】根据正六边形的内角度数可得出∠BAD=30°,为等边三角形,得BC=2AB,再通过解直角三角形即可得出a的值,进而可求出a的值,此题得解.【详解】解:如图,∵正六边形的任一内角为120°,∴∠ABD=180°-120°=60°, ∴∠BAD=30°,为等边三角形, ∴这个正六边形半径R和扳手的开口a的值分别是4,4故选:B.【点睛】本题考查了正多边形以及勾股定理,牢记正多边形的内角度数是解题的关键.9、C【解析】【分析】分别计算出正三角形、正方形、正六边形的边心距,后根据勾股定理的逆定理,等腰三角形的判定,等边三角形的判定,三角形构成的条件,判断即可.【详解】如图,∵正三角形、正方形、正六边形都内接于半径为1的圆,边心距分别为OCOEOGOA=1,∠AOC=60°,∠AOE=45°,∠AOG=30°,OC=OAcos60°=OE= OAcos45°=OG= OAcos30°=∴这个三角形是直角三角形,故选C.【点睛】本题考查了正多边形与圆,特殊角的三角函数,勾股定理的逆定理,熟练掌握正多边形的计算是解题的关键.10、C【解析】【分析】先利用切线长定理得到PA=PB,再利用∠APB=60°可判断△APB为等边三角形,然后根据等边三角形的性质求解.【详解】解:∵PAPB为⊙O的切线,PA=PB∵∠APB=60°,∴△APB为等边三角形,AB=PA=5.故选:C.【点睛】本题考查了切线长定理以及等边三角形的判定与性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题1、5【解析】【分析】根据圆的确定方法做出过ABC三点的外接圆,从而得出答案.【详解】如图,分别作ABBC的中垂线,两直线的交点为OO为圆心、OA为半径作圆,则⊙O即为过ABC三点的外接圆,由图可知,⊙O还经过点DEFGH这5个格点,故答案为5.【点睛】此题考查了确定圆的方法,三角形的外接圆,解题的关键是根据题意确定三角形ABC外接圆的圆心.2、6【解析】【分析】如图,连接OAOBOCODOEOF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.【详解】解:如图,连接OAOBOCODOEOF∵正六边形ABCDEFABBCCDDEEFFA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,的周长为的半径为正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.3、1【解析】【分析】AB为直径作圆,当CF与圆相切时,AF最大.根据切线长定理转化线段AFBCCF,在RtDFC利用勾股定理求解.【详解】解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.CF与圆相切时,AF最大.此时FAFGBCCGAFx,则DF=4−xFC=4+xRtDFC中,利用勾股定理可得:42+(4−x2=(4+x2解得x=1.故答案为:1.【点睛】本题主要考查正方形的性质、圆中切线长定理以及勾股定理,熟练掌握相关性质定理是解本题的关键.4、六【解析】【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:∵半径与边长相等,∴这个三角形是等边三角形,∴正多边形的边数:360°÷60°=6,∴这个正多边形是正六边形故答案为:六.【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.5、25或65【解析】【分析】由切线性质得出∠OCP=90°,根据圆周角定理和等腰三角形的性质以及三角形的外角性质求得∠CAB或∠CBA的度数即可解答.【详解】解:如图1,连接OCPC是⊙O的切线,OCPC,即∠OCP=90°,∵∠CPO=40°,∴∠POC=90°-40°=50°,OA=OC∴∠CAB=∠OCA∴∠POC=2∠CAB∴∠CAB=25°,如图2,∠CBA=25°,AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠CBA=65°,综上,∠CAB=25°或65°.【点睛】本题考查圆周角定理、切线的性质、等腰三角形的性质、三角形的外角性质、直角三角形的两锐角互余,熟练掌握切线性质和等腰三角形的性质是解答的关键.三、解答题1、 (1)作图见解析(2)证明见解析【解析】【分析】(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN于点D即可.(2)连接ADAB为直径,进而可得AE的切线.(1)解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点N,连接CN于点D(2)解:连接AD,如图为直径又∵AB为直径AE的切线.【点睛】本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.2、 (1)见解析(2)【解析】【分析】(1)根据切线的判定方法,证出即可;(2)由勾股定理得,,在中,根据,结合锐角三角函数求出角,再利用扇形的面积的公式求解即可.(1)解:如图,连接OBAB的切线,,即BC是弦,,在中,,即AC的切线;(2)解:在中,由勾股定理得,中,【点睛】本题考查切线的判定和性质,三角形全等的判定及性质、勾股定理、锐角三角函数、扇形的面积公式,解题的关键是掌握切线的判定方法,锐角三角函数的知识求解.3、 (1)见解析(2)【解析】【分析】(1)连接OD,根据等腰三角形的性质和角平分线定义证得∠ODA=∠DAE,可证得DOMN,根据平行线的性质和切线的判定即可证的结论;(2)连接CD,先由勾股定理求得AD,连接CD,根据圆周角定理和相似三角形的判定证明ACD∽△ADE,然后根据相似三角形的性质求解AC即可求解.(1)证明:连接ODOAOD∴∠OAD=∠ODAAD平分∠CAM,∠OAD=∠DAE∴∠ODA=∠DAEDOMNDEMNDEODD在⊙O上,   DE是⊙O的切线;(2)解:∵∠AED=90°,DE=8,AE=6,AD=10,连接CD,∵AC是⊙O的直径,∴∠ADC=∠AED=90°,∵∠CAD=∠DAE∴△ACD∽△ADE,即AC∴⊙O的半径是【点睛】本题考查等腰三角形的性质、角平分线的定义、平行线的判定与性质、切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质等知识,熟练掌握相关知识的联系与运用是解答的关键.4、 (1)BP=2(2)①4.8;②9.6【解析】【分析】(1)连接PT,由⊙PAD相切于点T,可得四边形ABPT是矩形,即得PT=AB=4=PE,在RtBPE中,用勾股定理即得BP=2(2)①由⊙PCD相切,有PC=PE,设BP=x,则PC=PE=10-x,在RtBPE中,由勾股定理得x2+22=(10-x2,即可解得BP=4.8;②点M在⊙P内的路径为EM,过PPNEMN,由EMABQ的中位线,可得四边形BPNE是矩形,即知EN=BP=4.8,故EM=2EN=9.6.(1)连接PT,如图:∵⊙PAD相切于点T∴∠ATP=90°,∵四边形ABCD是矩形,∴∠A=∠B=90°,∴四边形ABPT是矩形,PT=AB=4=PEEAB的中点,BE=AB=2,RtBPE中,(2)①∵⊙PCD相切,PC=PEBP=x,则PC=PE=10-xRtBPE中,BP2+BE2=PE2x2+22=(10-x2解得x=4.8,BP=4.8;②点Q从点B出发沿射线BC移动,MAQ的中点,点M在⊙P内的路径为EM,过PPNEMN,如图:由题可知,EMABQ的中位线,EMBQ∴∠BEM=90°=∠BPNEM∴∠PNE=90°,EM=2EN∴四边形BPNE是矩形,EN=BP=4.8,EM=2EN=9.6.故答案为:9.6.【点睛】本题考查矩形与圆的综合应用,涉及直线和圆相切、勾股定理、动点轨迹等,解题的关键是理解M的轨迹是△ABQ的中位线.5、 (1)见解析(2)【解析】【分析】(1)连接OC,由题意得,根据等边对等角得,即可得,则,即可得;(2)根据三角形的外角定理得,又根据是等边三角形,则,根据三角形内角和定理得,根据直角三角形的性质得,根据勾股定理得,用三角形OEC的面积减去扇形OCB的面积即可得.(1)证明:如图所示,连接OCAB的直径,直线l相切于点A∴直线DC的切线.(2)解:∵又∵是等边三角形,中,∴阴影部分的面积=【点睛】本题考查了切线,三角形的外角定理,等边三角形的判定与性质,直角三角形的性质,勾股定理,解题的关键是掌握这些知识点. 

    相关试卷

    冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练:

    这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练,共34页。试卷主要包含了在平面直角坐标系中,以点,下列说法正确的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练:

    这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试优秀一课一练,共37页。试卷主要包含了以半径为1的圆的内接正三角形等内容,欢迎下载使用。

    初中数学第29章 直线与圆的位置关系综合与测试优秀课后练习题:

    这是一份初中数学第29章 直线与圆的位置关系综合与测试优秀课后练习题,共29页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map