![2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(名师精选)01](http://www.enxinlong.com/img-preview/2/3/12721844/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(名师精选)02](http://www.enxinlong.com/img-preview/2/3/12721844/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年最新沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试题(名师精选)03](http://www.enxinlong.com/img-preview/2/3/12721844/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学第十五章 平面直角坐标系综合与测试课后测评
展开七年级数学第二学期第十五章平面直角坐标系综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
2、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB= ,OD=4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )
A.(,) B.(,) C.(,) D.(,)
3、如图为某停车场的平面示意图,若“奥迪”的坐标是(-2,-1),“奔驰”的坐标是(1,-1),则“东风标致”的坐标是( )
A.(-3,2) B.(3,2) C.(-3,-2) D.(3,-2)
4、平面直角坐标系内与点P关于原点对称的点的坐标是( )
A. B. C. D.
5、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1) →(1,0)→ … ],且每秒跳动一个单位,那么第25秒时跳蚤所在位置的坐标是( )
A.(4,0) B.(5,0) C.(0,5) D.(5,5)
6、若平面直角坐标系中的两点A(a,3),B(1,b)关于y轴对称,则a+b的值是( )
A.2 B.-2 C.4 D.-4
7、已知点P(m+3,2m+4)在x轴上,那么点P的坐标为( )
A.(-1,0) B.(1,0) C.(-2,0) D.(2,0)
8、根据下列表述,能确定位置的是( )
A.光明剧院8排 B.毕节市麻园路
C.北偏东40° D.东经116.16°,北纬36.39°
9、若点在第一象限,则a的取值范围是( )
A. B. C. D.无解
10、点关于轴对称的点的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知点到两坐标轴的距离相等,则点E的坐标为______.
2、在平面直角坐标系中,点(-2,5)关于原点对称的点的坐标是___________.
3、已知点与关于原点对称,则xy的值是______.
4、在平面直角坐标系中有两点,,如果点在轴上方,由点,,组成的三角形与全等时,此时点的坐标为______.
5、在平面直角坐标系中,点与点B关于y轴对称,则点B的坐标是________.
三、解答题(10小题,每小题5分,共计50分)
1、如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.
实验与探究:(1)观察图,易知A(0,2)关于直线l的对称点的坐标为(2,0),请在图中分别标明B(5,3)、C(﹣2,5)关于直线l的对称点、的位置,并写出他们的坐标: , ;
归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点的坐标为 (不必证明);
运用与拓广:(3)已知两点D(1,﹣3)、E(﹣3,﹣4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小.
2、已知点P(3a﹣15,2﹣a).
(1)若点P到x轴的距离是1,试求出a的值;
(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;
(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.
3、在平面直角坐标系中,的顶点,,的坐标分别为,,.与关于轴对称,点,,的对应点分别为,,.请在图中作出,并写出点,,的坐标.
4、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(3,2).
(1)将△ABC向下平移四个单位长度,画出平移后的△A1B1C1;(点A、B、C的对应点分别是点A1、B1、C1);
(2)画出△A1B1C1关于y轴对称的△A2B2C2(点A1、B1、C1的对称点分别是点A2、B2、C2).
5、如图,已知的三个顶点分别为,,.
(1)请在坐标系中画出关于轴对称的图形(,,的对应点分别是,,),并直接写出点,,的坐标;
(2)求四边形的面积.
6、在平面直角坐标系中,△ABC各顶点的坐标分别是A(2,5),B(1,2),C(4,1).
(1)作△ABC关于y轴对称后的△A′B′C′,并写出A′,B′,C′的坐标;
(2)在y轴上有一点P,当△PBB'和△ABC的面积相等时,求点P的坐标.
7、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
(1)请在图中标出点A和点C;
(2)△ABC的面积是 ;
(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .
8、已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;
(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.
9、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
(1)求证:点A为线段BC的中点.
(2)求点D的坐标.
10、如图所示的方格纸中,每个小方格的边长都是,点,,.
(1)作关于轴对称的;
(2)通过作图在轴上找出点,使最小,并直接写出点的坐标.
-参考答案-
一、单选题
1、C
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
2、B
【分析】
由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D’点坐标为(4,0),则C’点坐标为(1,).
【详解】
∵四边形ABCD为矩形
∴AB=CD=,∠DOC=60°
在中有
则C点坐标为(2,0),D点坐标为(2,)
又∵旋转后D点落在x轴的正半轴上
∴可看作矩形ABCD中绕点O顺时针旋转了60°得到
如图所示,过C’作y轴平行线交x轴于点M
其中∠DOC=∠D’OC’=60°,∠OMC’=90°,OC=OC’=2
∴OM==1,MC’==
∴C’坐标为(1,).
故选:B.
【点睛】
本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60°是解题的关键.
3、D
【分析】
由题意,先建立平面直角坐标系,确定原点的位置,即可得到“东风标致”的坐标.
【详解】
解:∵“奥迪”的坐标是(2,1),“奔驰”的坐标是(1,1),
∴建立平面直角坐标系,如图所示:
∴“东风标致”的坐标是(3,2);
故选:D.
【点睛】
本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.
4、C
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数求解即可.
【详解】
解:由题意,得
点P(-2,3)关于原点对称的点的坐标是(2,-3),
故选:C.
【点睛】
本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
5、C
【分析】
根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案.
【详解】
解:由题意可知,质点每秒移动一个单位
质点到达(1,0)时,共用3秒;
质点到达(2,0)时,共用4秒;
质点到达(0,2)时,共用4+4=8秒;
质点到达(0,3)时,共用9秒;
质点到达(3,0)时,共用9+6=15秒;
以此类推,质点到达(4,0)时,共用16秒;
质点到达(0,4)时,共用16+8=24秒;
质点到达(0,5)时,共用25秒;
故选:C.
【点睛】
本题考查图形变化与运动规律,根据所给质点运动的特点能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.找出规律是解题的关键.
6、A
【分析】
直接利用关于y轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.
【详解】
解:依题意可得a=-1,b=3
∴a+b=2
故选A.
【点睛】
此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.
7、B
【分析】
根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.
【详解】
解:∵点P(m+3,2m+4)在x轴上,
∴2m+4=0,
解得:m=-2,
∴m+3=-2+3=1,
∴点P的坐标为(1,0).
故选:B.
【点睛】
本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.
8、D
【分析】
根据位置的确定需要两个条件对各选项分析判断即可得解.
【详解】
解:.光明剧院8排,没有明确具体位置,故此选项不合题意;
.毕节市麻园路,不能确定位置,故此选项不合题意;
.北偏东,没有明确具体位置,故此选项不合题意;
.东经,北纬,能确具体位置,故此选项符合题意;
故选:D.
【点睛】
本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.
9、B
【分析】
由第一象限内的点的横纵坐标都为正数,可列不等式组,再解不等式组即可得到答案.
【详解】
解: 点在第一象限,
由①得:
由②得:
故选B
【点睛】
本题考查的是根据点所在的象限求解字母的取值范围,掌握坐标系内点的坐标特点是解本题的关键.
10、B
【分析】
根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.
【详解】
解:∵点A的坐标为(-2,-3),
∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).
故选:B.
【点睛】
本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.
二、填空题
1、(-7,-7)或()
【分析】
根据点到两坐标轴的距离相等,得到,解方程求出a的值代入计算即可得到答案.
【详解】
解:由题意得,
解得或,
当时,a-3=-7,2a+1=-7,点E的坐标为(-7,-7),
当时,,∴点E的坐标为(),
故答案为:(-7,-7)或().
【点睛】
此题考查直角坐标系中点的坐标特点,正确掌握点到两坐标轴的距离相等,得到是解题的关键.
2、(2,-5)
【分析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).
【详解】
解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5).
故答案为:(2,-5).
【点睛】
本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,比较简单.
3、
【分析】
直接利用关于原点对称点的性质得出x,y的值进而得出答案.
【详解】
解:∵点与关于原点对称,
∴
解得:,
则xy的值是:-3.
故答案为:-3.
【点睛】
此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.
4、 (4,2)或(-4,2)或(4,2)
【分析】
根据点的坐标确定OA、OB的长,然后利用全等可分析点的位置,最后分情况解答即可.
【详解】
解:∵在平面直角坐标系中有两点A(4,0)、B(0,2),
∴OA=4,OB=2,∠AOB=90°
∵△CBO≌△AOB
∴CB= OA =4,OB=OB=2,
∵点在轴上方
∴当点C在第一象限时,C点坐标为(4,2)
当点C在第二象限时,C点坐标为(-4,2)
∴C的坐标可以为(4,2)或(-4,2).
故填(4,2)或(-4,2).
【点睛】
本题主要考查了全等三角形的性质,掌握分类讨论思想、做到不重不漏是解答本题的关键.
5、(-2,4)
【分析】
根据点(x,y)关于y轴对称的点的坐标为(-x, y)进行解答即可.
【详解】
解:点A(2,4)关于y轴对称的点B的坐标是(-2,4),
故答案为:(-2,4).
【点睛】
本题考查关于y轴对称的点的坐标,熟知关于y轴对称的点的坐标变换规律是解答的关键.
三、解答题
1、(1)(3,5),(5,﹣2);(2)(b,a);(3)Q(-3,-3)
【分析】
(1)根据点关于直线对称的定义,作出B、C两点关于直线l的对称点B′、C′,写出坐标即可.
(2)通过观察即可得出对称结论.
(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,此时QE+QD的值最小.
【详解】
解:(1)B(5,3)、C(﹣2,5)关于直线l的对称点B′、C′的位置如图所示.
B′(3,5),C′(5,﹣2).
故答案为B′(3,5),C′(5,﹣2).
(2)由(1)可知点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为P′(b,a).
(3)作点E关于直线l的对称点E′(﹣4,﹣3),连接DE′交直线l于Q,
∵两点之间线段最短
∴此时QE+QD的值最小,
由图象可知Q点坐标为(-3,-3).
【点睛】
本题考查了坐标系中的轴对称变化,点关于第一、三象限角平分线对称的点的坐标为;关于第二、四象限角平分线对称的点的坐标为.
2、(1)或;(2)或;(3)或.
【分析】
(1)根据“点到轴的距离是1”可得,由此即可求出的值;
(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;
(3)先根据“点位于第三象限”可求出的取值范围,再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案.
【详解】
解:(1)点到轴的距离是1,且,
,即或,
解得或;
(2)当时,点的坐标为,
则点的坐标为,即,
当时,点的坐标为,
则点的坐标为,即,
综上,点的坐标为或;
(3)点位于第三象限,
,解得,
点的横、纵坐标都是整数,
或,
当时,,则点的坐标为,
当时,,则点的坐标为,
综上,点的坐标为或.
【点睛】
本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.
3、作图见解析,点,点,点
【分析】
分别作出A,B,C的对应点,,即可.
【详解】
解: 如图所示.
点,点,点.
【点睛】
本题考查了作图-轴对称变换,直角坐标系中表示点的坐标,熟知关于y轴对称的点的坐标特点是解答此题的关键.
4、(1)图见解析;(2)图见解析.
【分析】
(1)先根据平移分别画出点,再顺次连接即可得;
(2)先根据轴对称的性质画出点,再顺次连接即可得.
【详解】
解:(1)如图,即为所求;
(2)如图,即为所求.
【点睛】
本题考查了平移作图、画轴对称图形,熟练掌握平移和轴对称的作图方法是解题关键.
5、(1)画图见解析,,,;(2)
【分析】
(1)根据关于轴对称的点的坐标特征写出点,,的坐标,然后描点即可;
(2)根据三角形面积公式,利用四边形的面积进行计算.
【详解】
解:(1)根据题意得:点,,关于轴的对称点分别为,,,
如图,为所作;
(2)四边形的面积
.
【点睛】
本题主要考查了图形的变换——轴对称,坐标与图形,熟练掌握轴对称图形的关键是找到对称轴,图形关于对称轴折叠前后对应线段,对应角相等是解题的关键.
6、(1)见解析;A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)P的坐标为(0,7)或(0,﹣3)
【分析】
(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;
(2)根据三角形的面积公式,进而可得出P点坐标.
【详解】
解:(1)如图所示:
A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);
(2)△ABC的面积=,
∵BB'=2,
∴P的坐标为(0,7)或(0,﹣3).
【点睛】
本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.
7、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
【分析】
(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
(2)得出△ABC的底和高再由三角形面积公式计算即可.
(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
【详解】
解:(1)如图所示,点A为(-4,0),
∵点C与点A关于y轴对称
∴点C坐标为(4,0)
(2)由×底×高有
(3)∵S△ACD=S△ABC,AC=AC
∴
即D点的纵坐标为4或-4
又∵D点在y轴上
故D点坐标为(0,4)或(0,-4).
【点睛】
本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
8、(1)见解析;(2)见解析;(3)(﹣4,﹣3)
【分析】
(1)分别作出A,B,C 的对应点A1,B1,C1即可.
(2)分别作出点A1,B1,C1的对应点A2,B2,C2即可.
(3)根据所画图形,直接写出坐标即可.
【详解】
解:(1)如图所示,△A1B1C1即为所求;
(2)如图所示,△A2B2C2即为所求;
(3)点B2的坐标为(﹣4,﹣3).
【点睛】
本题考查作图——轴对称变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
9、(1)证明见解析,(2)(8,2).
【分析】
(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
【详解】
(1)证明:过点C作CQ⊥OA于Q,
∵点B的坐标是,点C的坐标为,
∴CQ=OB=4,
∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
∴△CQA≌△BOA,
∴CA=AB,
∴点A为线段BC的中点.
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
∵,
∴∠CRB=∠DSB=∠CBD=90°,
∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
∴∠CBR=∠SDB,
∵,
∴∠BCD=∠BDC=45°,
∴CB=DB,
∴△CRB≌△BSD,
∴CR=SB,RB=DS,
∵点B的坐标是,点C的坐标为,
∴CR=SB=6,RB=DS=8,
∴OS=SB-OB=2,
点D的坐标为(8,2).
【点睛】
本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
10、(1)见解析;(2)见解析,点P的坐标为(−3,0)
【分析】
(1)先分别作出点A、B、C关于y轴的对称点,然后再顺次连接可得;
(2)作点A关于x轴的对称点A″,再连接A″C交x轴于点P,再确定点P的坐标即可.
【详解】
解:(1)如图所示:即为所求.
(2)作点A关于x轴的对称点A′′,连结A′′C,交x轴于点P,点P即为所求,点P的坐标为(−3,0)
【点睛】
本题主要考查作图﹣轴对称变换,熟练掌握轴对称变换的定义和性质及最短路径问题是解答本题的关键.
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试当堂检测题,共28页。试卷主要包含了在平面直角坐标系中,点P,点P关于y轴对称点的坐标是.,已知A等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习,共30页。试卷主要包含了在平面直角坐标系中,点P,点P在第二象限内,P点到x,如图,A等内容,欢迎下载使用。
2021学年第十五章 平面直角坐标系综合与测试当堂检测题: 这是一份2021学年第十五章 平面直角坐标系综合与测试当堂检测题,共27页。试卷主要包含了点在,已知点A,如果点P,若平面直角坐标系中的两点A,已知点M等内容,欢迎下载使用。