![2022年冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试试卷(含答案详解)第1页](http://www.enxinlong.com/img-preview/2/3/12723671/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试试卷(含答案详解)第2页](http://www.enxinlong.com/img-preview/2/3/12723671/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版九年级数学下册第二十九章直线与圆的位置关系定向测试试卷(含答案详解)第3页](http://www.enxinlong.com/img-preview/2/3/12723671/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试一课一练
展开
这是一份初中数学冀教版九年级下册第29章 直线与圆的位置关系综合与测试一课一练,共38页。
九年级数学下册第二十九章直线与圆的位置关系定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,等边△ABC内接于⊙O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切⊙O于点C,AF⊥CF交⊙O于点G.下列结论:①∠ADC=60°;②DB2=DE•DA;③若AD=2,则四边形ABDC的面积为;④若CF=2,则图中阴影部分的面积为.正确的个数为( )
A.1个 B.2个 C.3个 D.4个
2、已知是正六边形的外接圆,正六边形的边心距为,将图中阴影部分的扇形围成一个圆锥的侧面,则该圆锥的底面圆的半径为( )
A.1 B. C. D.
3、已知⊙O的半径为4,点P 在⊙O外部,则OP需要满足的条件是( )
A.OP>4 B.0≤OP2 D.0≤OP4,
故选:A.
【点睛】
此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.
4、A
【解析】
【分析】
根据点与圆的位置关系得出OP>3即可.
【详解】
解:∵⊙O的半径为3,点P在⊙O外,
∴OP>3,
故选:A.
【点睛】
本题考查点与圆的位置关系,解答的关键是熟知点与圆的位置关系:设平面内的点与圆心的距离为d,圆的半径为r,则点在圆外d>r,点在圆上d=r,点在圆内d<r.
5、C
【解析】
【分析】
如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得.
【详解】
解:如图,由题意得:,
是等边三角形,
,
则这个正多边形的边数为,
故选:C.
【点睛】
本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.
6、B
【解析】
【分析】
连接OD,求出BC是⊙O的切线,根据切线长定理得出CD=BC,根据切线的性质求出∠ODM=90°,根据勾股定理求出MD,再根据勾股定理求出BC即可.
【详解】
解:连接OD,
∵MD切⊙O于D,
∴∠ODM=90°,
∵⊙O的半径为2,MA=AO,AB是⊙O的直径,
∴MO=2+2=4,MB=4+2=6,OD=2,
由勾股定理得:MD===2,
∵BC⊥AB,
∴BC切⊙O于B,
∵DC切⊙O于D,
∴CD=BC,
设CD=CB=x,
在Rt△MBC中,由勾股定理得:MC2=MB2+BC2,
即(2+x)2=62+x2,
解得:x=2,
即BC=2,
故选:B.
【点睛】
本题考查了切线的性质和判定,圆周角定理,勾股定理等知识点,能综合运用定理进行推理是解此题的关键.
7、B
【解析】
【分析】
根据三角形内心的性质得到∠OBC=∠ABC=25°,∠OCB=∠ACB=37°,然后根据三角形内角和计算∠BOC的度数.
【详解】
解:∵点O是△ABC的内心,
∴OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×74°=37°,
∴∠BOC=180°-∠OBC-∠OCB=180°-25°-37°=118°.
故选B.
【点睛】
本题考查了三角形的内切圆与内心:三角形的内心就是三角形三个内角角平分线的交点,三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.
8、D
【解析】
【分析】
先根据等边三角形的性质求出△OBC的面积,然后由地基的面积是△OBC的6倍即可得到答案
【详解】
解:如图所示,正六边形ABCDEF,连接OB,OC,过点O作OP⊥BC于P,
由题意得:BC=4cm,
∵六边形ABCD是正六边形,
∴∠BOC=360°÷6=60°,
又∵OB=OC,
∴△OBC是等边三角形,
∴,,
∴,
∴,
∴,
故选D.
【点睛】
本题主要考查了正多边形和圆,等边三角形的性质与判定,勾股定理,熟知正多边形和圆的关系是解题的关键.
9、A
【解析】
【分析】
设正六边形的边长为1,当在上时,过作于 而 求解此时的函数解析式,当在上时,延长交于点 过作于 并求解此时的函数解析式,当在上时,连接 并求解此时的函数解析式,由正六边形的对称性可得:在上的图象与在上的图象是对称的,在上的图象与在上的图象是对称的,从而可得答案.
【详解】
解:设正六边形的边长为1,当在上时,
过作于 而
当在上时,延长交于点 过作于
同理:
则为等边三角形,
当在上时,连接
由正六边形的性质可得:
由正六边形的对称性可得: 而
由正六边形的对称性可得:在上的图象与在上的图象是对称的,
在上的图象与在上的图象是对称的,
所以符合题意的是A,
故选A
【点睛】
本题考查的是动点问题的函数图象,锐角三角函数的应用,正多边形的性质,清晰的分类讨论是解本题的关键.
10、D
【解析】
【分析】
根据圆的有关概念、确定圆的条件、圆周角定理及三角形的外心的性质解得即可.
【详解】
解:A、在同圆或等圆中,能完全重合的弧才是等弧,故错误;
B、不在同一直线上的三点确定一个圆,故错误;
C、在同圆或等圆中,同弧或等弧所对的圆心角是圆周角的2倍,故错误;
D、三角形的外心到三角形的三个顶点的距离相等,故正确;
故选D.
【点睛】
本题考查了圆的有关的概念,属于基础知识,必须掌握.
二、填空题
1、1.5
【解析】
【分析】
根据平分,平分,,交于点,得出点是的内心,并画出的内切圆,再根据切线长定理列出方程组,求出的边上的高,进而求出其面积.
【详解】
解:平分,平分,,交于点,
点是的内心.
如图,画出的内切圆,与、、分别相切于点、、,且连接,
设,,,得方程组:
解得:,
,
的面积.
故答案为:1.5.
【点睛】
此题主要考查三角形内切圆的应用,解题的关键是熟知三角形内切圆的性质,根据其性质列出方程组求解.
2、6
【解析】
【分析】
如图,连接OA、OB、OC、OD、OE、OF,证明△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,再求出圆的半径即可.
【详解】
解:如图,连接OA、OB、OC、OD、OE、OF.
∵正六边形ABCDEF,
∴AB=BC=CD=DE=EF=FA,∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠FOA=60°,
∴△AOB、△BOC、△DOC、△EOD、△EOF、△AOF都是等边三角形,
∵的周长为,
∴的半径为,
正六边形的边长是6;
【点睛】
本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键.
3、六
【解析】
【分析】
根据正多边形的中心角=计算即可.
【详解】
解:设正多边形的边数为n.
由题意得,=60°,
∴n=6,
故答案为:六.
【点睛】
本题考查正多边形和圆,解题的关键是记住正多边形的中心角=.
4、
【解析】
【分析】
连接AD,由圆周角定理可求出,即可利用扇形面积公式求出.由切线的性质可知,即可利用三角形面积公式求出.最后根据,即可求出结果.
【详解】
如图,连接AD.
∵,
∴,
∴.
∵BC是⊙O切线,且切点为D,
∴,,
∴.
∵,
∴.
故答案为:.
【点睛】
本题考查圆周角定理,切线的性质,扇形的面积公式.连接常用的辅助线是解答本题的关键.
5、
【解析】
【分析】
正六边形的面积由6个全等的边长为2的等边三角形面积组成,计算一个等边三角形的面积,乘以6即可.
【详解】
解:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则△OAB是正三角形.
∴OA=AB=2,
∴AC=AB=1,
∴,
∴S△OAB=AB•OC=×2×=,
则正六边形的面积为6×=6.
故答案为:6.
【点睛】
本题考查了正多边形的面积,等边三角形的性质,熟练把多边形的面积转化为三角形面积的倍数计算是解题的关键.
三、解答题
1、 (1)①(4,3)或C(4,−3),,②,
(2)
【解析】
【分析】
(1)①在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,圆心C的坐标为(4,3),半径为3,根据对称性可知点C(4,−3)也满足条件;②当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,根据⊙C的半径得⊙C与y轴相交,设交点为,,此时,在y轴的正半轴上,连接、、CA,则==CA =r=3,得,即可得;
(2)如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,在y轴的负半轴上任取一点M(不与点P重合),连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,则∠APB=∠ANB,∠ANB是△MAN的外角,∠ANB>∠AMB,即∠APB>∠AMB,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,四边形OPEF是矩形,OP=EF,PE=OF=4,得,则,即可得.
(1)
①如图1中,
在x轴的上方,作以AB为斜边的等腰直角三角形△ACB,易知A,B,P三点在⊙C上,
圆心C的坐标为(4,3),半径为3,
根据对称性可知点C(4,−3)也满足条件,
故答案是:(4,3)或C(4,−3),,
②y轴的正半轴上存在线段AB的“等角点”。
如图2所示,当圆心为C(4,3)时,过点C作CD⊥y轴于D,则D(0,3),CD=4,
∵⊙C的半径,
∴⊙C与y轴相交,
设交点为,,此时,在y轴的正半轴上,
连接、、CA,则==CA =r=3,
∵CD⊥y轴,CD=4,,
∴,
∴,;
当圆心为C(4,-3)时,点P在y轴的负半轴上,不符合题意;
故答案为:,
(2)
当过点A,B的圆与y轴负半轴相切于点P时,∠APB最大,理由如下:
如果点P在y轴的负半轴上,设此时圆心为E,则E在第四象限,
如图3所示,在y轴的负半轴上任取一点M(不与点P重合),
连接MA,MB,PA,PB,设MB交于⊙E于点N,连接NA,
∵点P,点N在⊙E上,
∴∠APB=∠ANB,
∵∠ANB是△MAN的外角,
∴∠ANB>∠AMB,
即∠APB>∠AMB,
此时,过点E作EF⊥x轴于F,连接EA,EP,则AF=AB=3,OF=4,
∵⊙E与y轴相切于点P,则EP⊥y轴,
∴四边形OPEF是矩形,OP=EF,PE=OF=4,
∴⊙E的半径为4,即EA=4,
∴在Rt△AEF中,,
∴,
即 .
故答案为:
【点睛】
本题考查了圆与三角形,勾股定理,三角形的外角,矩形的性质,解题的关键是掌握这些知识点.
2、 (1)作图见解析
(2)证明见解析
【解析】
【分析】
(1)如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D即可.
(2)连接AD , ,,,,AB为直径,进而可得AE是的切线.
(1)
解:如图,以点C为圆心BC为半径画弧交AC于点M;以B、M为圆心,大于为半径画弧,交点为N,连接CN交于点D.
(2)
解:连接AD,如图
∵为直径
∴
∵
∴
∴
又∵AB为直径
∴AE是的切线.
【点睛】
本题考查了角平分线的画法,圆周角,切线的判定等知识.解题的关键在于对知识的灵活熟练的运用.
3、 (1)见解析
(2)4,
【解析】
【分析】
(1)连接OA.由及圆周角定理求出∠OAD=90°,即可得到结论;
(2)设⊙O的半径为R,在Rt△OAE中,勾股定理求出R, 延长CO交⊙O于F,连接AF,证明△CEB∽△AEF,得到,由此求出⊙O的半径和线段BC的长.
(1)
证明:连接OA.
∵,
∴∠AOC+∠OAD=180°,
∵∠AOC=2∠ABC=2×45°=90°,
∴∠OAD=90°,
∴OA⊥AD,
∵OA是半径,
∴AD是⊙O的切线.
(2)
解:设⊙O的半径为R,则OA=R,OE=R-2.
在Rt△OAE中,,
∴,
解得或(不合题意,舍去),
延长CO交⊙O于F,连接AF,
∵∠AEF=∠CEB,∠B=∠AFE,
∴△CEB∽△AEF,
∴,
∵CF是直径,
∴CF=8,∠CAF=90°,
又∵∠F=∠ABC=45°,
∴∠F=∠ACF=45°,
∴AF=,
∴,
∴BC=.
.
【点睛】
此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键.
4、 (1)见解析
(2)
(3)①见解析;②
【解析】
【分析】
(1)根据正方形的性质以及动点的路程相等,证明,根据同角的余角相等,即可证明,即;
(2)当t=0时,点M与点B重合,当时,点随之停止,求得运动轨迹为圆,根据弧长公式进行计算即可;
(3)①根据(2)可得△CME的外接圆的圆心O是斜边CE的中点,继而判断点D、C、M、E在同一个圆()上;②当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H,在Rt△CHO中求得半径,进而勾股定理求得,即可求得当时,与正方形的各边共有6个交点.
(1)
四边形是正方形,
,
又的运动速度都是2cm/s,
即
(2)
∵.
∴点M在以CB为直径的圆上,如图1,当t=0时,点M与点B重合;
如图2,当t=3时,点M为正方形对角线的交点.点M的运动路径为圆,其路径长.
故答案为:
(3)
①如图3.由前面结论可知:
∴△CME的外接圆的圆心O是斜边CE的中点,
则
在Rt△CDE中,,O是CE的中点.
∴,
∴
∴点D、C、M、E在同一个圆()上,
即点D在△CME的外接圆上;.
②.
如图4,当与AB相切时,与正方形的各边共有5个交点,如图5则有6个交点,所以“当与AB相切时”是临界情况.
如图4,当与AB相切(切点为G),连接OG,并延长GO交CD于点H.
∵AB与相切,
∴,
又∵,
∴,
设的半径为R.由题意得:
在Rt△CHO中,,解得
∴
∴,即
∴如图5,当时,与正方形的各边共有6个交点.
【点睛】
本题考查了求弧长,切线的性质,直径所对的圆周角是直角,三角形的外心,正方形的性质,全等三角形的性质与判定,分类讨论是解题的关键.
5、 (1)见解析
(2)
【解析】
【分析】
(1)连接PC,则∠APC=2∠B,可证PC∥DA,证得PC⊥CD,则结论得证;
(2)连接AC,根据∠B=30°,等腰三角形外角性质∠CPA=2∠B=60°,再证△APC为等边三角形,可求∠DCA=90°-∠ACP=90°-60°=30°,AD=2,∠ADC=90°,利用30°直角三角形性质得出AC=2AD=4,然后根据勾股定理CD=即可.
(1)
连接PC,
∵PC=PB,
∴∠B=∠PCB,
∴∠APC=2∠B,
∵2∠B+∠DAB=180°,
∴∠DAP+∠APC=180°,
∴PC∥DA,
∵∠ADC=90°,
∴∠DCP=90°,
即DC⊥CP,
∴直线CD为⊙P的切线;
(2)
连接AC,
∵∠B=30°,
∴∠CPA=2∠B=60°,
∵AP=CP,∠CPA=60°,
∴△APC为等边三角形,
∵∠DCP=90°,
∴∠DCA=90°-∠ACP=90°-60°=30°,
∵AD=2,∠ADC=90°,
∴AC=2AD=4,
∴CD=.
【点睛】
本题考查切线的判定、平行线判定与性质,勾股定理、等腰三角形性质,外角性质,等边三角形的判定与性质等知识,解题的关键是灵活应用这些知识解决问题.
相关试卷
这是一份冀教版九年级下册第29章 直线与圆的位置关系综合与测试精品达标测试,共39页。试卷主要包含了以半径为1的圆的内接正三角形,如图,FA等内容,欢迎下载使用。
这是一份九年级下册第29章 直线与圆的位置关系综合与测试精品同步测试题,共33页。试卷主要包含了将一把直尺等内容,欢迎下载使用。
这是一份2020-2021学年第29章 直线与圆的位置关系综合与测试精品精练,共32页。试卷主要包含了如图所示,在的网格中,A等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)