初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课时练习
展开六年级数学下册第五章基本平面图形同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,数轴上的,,三点所表示的数分别为,,,其中,如果,那么下列结论正确的是( )
A. B. C. D.
2、如图,∠AOB,以OA为边作∠AOC,使∠BOC=∠AOB,则下列结论成立的是( )
A. B.
C.或 D.或
3、图中共有线段( )
A.3条 B.4条 C.5条 D.6条
4、若,则的补角的度数为( )
A. B. C. D.
5、钟表10点30分时,时针与分针所成的角是( )
A. B. C. D.
6、七巧板是我国民间流传最广的一种传统智力玩具,由正方形分割成七块板组成(如图),则图中4号部分的小正方形面积是整个正方形面积的( )
A. B. C. D.
7、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
8、①直线AB和直线BA是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )
A.②③④ B.①②④ C.③④ D.①
9、校园中常常看到“在草坪上斜踩出一条小路”,请用数学知识解释图中这一不文明现象,其原因为( )
A.直线外一点与直线上点之间的连线段有无数条 B.过一点有无数条直线
C.两点确定一条直线 D.两点之间线段最短
10、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、转化0.15°为单位秒是______.
2、已知A、B、C三点在同一直线上,AB=21,BC=9,点E、F分别为线段AB、BC的中点,那么EF等于___.
3、45°30'=_____°.
4、如图,点Q在线段AP上,其中PQ=10,第一次分别取线段AP和AQ的中点P1,Q1,得到线段P1Q1,则线段P1Q1=_____;再分别取线段AP1和AQ1的中点P2,Q2,得到线段P2Q2;第三次分别取线段AP2和AQ2的中点P3,Q3,得到线段P3Q3;连续这样操作2021次,则每次的两个中点所形成的所有线段之和P1Q1+P2Q2+P3Q3+…+P2021Q2021=_____.
5、比较大小:18.25°______18°25′(填“>”“<”或“=”)
三、解答题(5小题,每小题10分,共计50分)
1、补全解题过程.
如图所示,点C是线段AB的中点,延长线段AB至点D,使BD=AB,若BC=3,求线段CD的长.
解:∵点C是线段AB的中点,且BC=3(已知),
∴AB=2× (①填线段名称)= (②填数值)
∵BD=AB(已知),
∴BD= (③填数值),
∴.CD= (④填线段名称)+BD= (⑤填数值).
2、如图,、两点把线段分成三部分,,为的中点.
(1)判断线段与的大小关系,说明理由.
(2)若,求的长.
3、如图,点为线段上一点,点为的中点,且.求线段的长.
4、如图,已知线段,射线.
(1)尺规作图:在射线上截取,,且(保留作图痕迹,不写作法);
(2)在(1)的图中,标出的中点,的三等分点(左右),并用含的式子表示线段的长.
5、如图,已知线段AB=12cm,CD=2cm,线段CD在线段AB上运动,E、F分别是AC、BD的中点.
(1)若AC=4cm,EF=___cm;
(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据得到三点与原点的距离大小,利用得到原点的位置即可判断三个数的大小.
【详解】
解:,
点A到原点的距离最大,点其次,点最小,
又,
原点的位置是在点、之间且靠近点的地方,
,
故选:.
【点睛】
此题考查了利用数轴比较数的大小,理解绝对值的几何意义, 确定出原点的位置是解题的关键.
2、D
【解析】
【分析】
分OC在∠AOB内部和OC在∠AOB外部两种情况讨论,画出图形即可得出结论.
【详解】
解:当OC在∠AOB内部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=∠BOC;
当OC在∠AOB外部时,
∵∠BOC=∠AOB,即∠AOB=2∠BOC,
∴∠AOC=3∠BOC;
综上,∠AOC=∠BOC或∠AOC=3∠BOC;
故选:D.
【点睛】
本题考查了角平分线的定义,熟练掌握角平分线的定义,数形结合解题是关键.
3、D
【解析】
【分析】
分别以为端点数线段,从而可得答案.
【详解】
解:图中线段有:
共6条,
故选D
【点睛】
本题考查的是线段的含义以及数线段的数量,掌握“数线段的方法,做到不重复不遗漏”是解本题的关键.
4、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角的度数为.
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
5、B
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:10点30分时的时针和分针相距的份数是4.5,
10点30分时的时针和分针所成的角的度数为30°×4.5=135°,
故选:B.
【点睛】
本题考查的知识点是钟面角,解题关键是求出时针和分针之间的格子数,再根据每个格子对应的圆心角的度数,列式解答.
6、C
【解析】
【分析】
把正方形进行分割,可分割成16个面积相等的等腰直角三角形,4号是正方形,由两个等腰直角三角形组成,占整个正方形面积的.
【详解】
解:把大正方形进行切割,如下图,
由图可知,正方形可分割成16个面积相等的等腰直角三角形,
号正方形,由两个等腰直角三角形组成,
占整个正方形面积的.
故选 C.
【点睛】
本题主要考查了七巧板,正方形的性质,能够正确的识别图形,明确4号部分的正方形是由两个等腰直角三角形构成是解题的关键.
7、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
8、B
【解析】
【分析】
根据直线的表示方法,平角,补角,线段的性质逐个判断即可.
【详解】
①直线AB和直线BA是同一条直线,正确
②平角等于180°,正确
③一个角是70°39',它的补角应为:,所以错误
④两点之间线段最短,正确
故选B
【点睛】
本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.
9、D
【解析】
【分析】
根据题意可知,原因为两点之间线段最短,据此分析即可
【详解】
解:校园中常常看到“在草坪上斜踩出一条小路”, 其原因为两点之间线段最短
故选D
【点睛】
本题考查了线段的性质,掌握两点之间线段最短是解题的关键.
10、A
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:9:30时针与分针相距3.5份,每份的度数是30°,
在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.
故选:A.
【点睛】
本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.
二、填空题
1、540秒
【解析】
【分析】
先把度化为分,再把分化为秒即可.
【详解】
故答案为:540秒
【点睛】
本题考查了度、分、秒之间的互化,注意它们相邻两个单位间的进率都是六十,且高级单位的量化为低级单位的量要乘以进率.
2、6或15##15或6
【解析】
【分析】
分点B在线段AC上和点C在线段AB上两种情况,根据线段中点的性质进行计算即可.
【详解】
解:如图,
当点B在线段AC上时,
∵AB=21,BC=9,E、F分别为AB,BC的中点,
∴EB=AB=10.5,BF=BC=4.5,
∴EF=EB+FB=10.5+4.5=15;
如图,
当点C在线段AB上时,
∴EF=EB-FB=10.5-4.5=6,
故答案为:6或15.
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想、分情况讨论思想是解题的关键.
3、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
4、 5
【解析】
【分析】
根据线段中点定义分别求出,据此得到规律代入计算即可.
【详解】
解:∵线段AP和AQ的中点为P1,Q1,
∴,
∵AP>AQ,
∴P1Q1==5;
∵线段AP1和AQ1的中点为P2,Q2,
∴,
∴,
同理:,,
∴P1Q1+P2Q2+P3Q3+…+P2021Q2021
=
=
设①,
则②,
①-②得,
∴,
∴P1Q1+P2Q2+P3Q3+…+P2021Q2021=,
故答案为:5,.
【点睛】
此题考查了数轴上两点之间的距离公式,线段中点的定义,有理数的混合运算,规律的总结与计算,根据线段中点定义列得规律是解题的关键.
5、<
【解析】
【分析】
先把化为 从而可得答案.
【详解】
解:
而
故答案为:<
【点睛】
本题考查的是角度的大小比较,角的单位换算,掌握“角的60进位制以及大化小用乘法”是解本题的关键.
三、解答题
1、;;;;
【解析】
【分析】
根据线段的中点的性质以及线段的和差关系填写过程即可
【详解】
解:∵点C是线段AB的中点,且BC=3(已知),
∴AB=2×(①填线段名称)=(②填数值)
∵BD=AB(已知),
∴BD=(③填数值),
∴.CD=(④填线段名称)+BD=(⑤填数值).
【点睛】
本题考查了有关线段中点的计算,线段和差的计算,数形结合是解题的关键.
2、 (1),见解析
(2)50
【解析】
【分析】
(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,表示出CM,即可求解;
(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.
(1)
.理由如下:
设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,
∵M为AD的中点,
∴AM=DM=AD=5x,
∴CM=DM-CD=5x-3x=2x,
∴AB=CM;
(2)
∵CM=10cm,CM=2x,
∴2 x=10,
解得x=5,
∴AD=10x=50cm.
【点睛】
本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.
3、14cm
【解析】
【分析】
根据点B为的中点和可求得CD的长,根据图中线段的关系即可求解.
【详解】
解:∵点B是的中点,,
∴,
又∵,
∴.
【点睛】
本题考查了线段的相关知识,解题的关键是根据线段中点的定义正确求解.
4、 (1)见解析
(2)图见解析,
【解析】
【分析】
(1)利用作一条线段等于已知线段的作法,即可求解;
(2)根据(1)中的作图过程,正确标出点D、E、F,再根据线段的和与差,即可求解.
(1)
解:如下图,线段AB、BC即为所求;
(2)
解:如图所示,点D、E、F即为所求
根据题意得: ,
∴.
【点睛】
本题主要考查了尺规作图——作一条线段等于已知线段,有关中点的计算,熟练掌握作一条线段等于已知线段的作法,利用数形结合思想解答是解题的关键.
.
5、 (1)7
(2)不改变,EF=7cm.
【解析】
【分析】
(1)先求出线段BD,然后再利用线段中点的性质求出AE,BF即可;
(2)利用线段中点的性质证明EF的长度不会发生改变.
(1)
解:∵AB=12cm,CD=2cm,AC=4cm,
∴BD=AB-CD-AC=6(cm),
∵E、F分别是AC、BD的中点,
∴CE=AC=2(cm),DF=BD=3(cm),
∴EF=CE+CD+DF=7(cm);
故答案为:7;
(2)
不改变,
理由:∵AB=12cm,CD=2cm,
∴AC+BD=AB-CD=10(cm),
∵E、F分别是AC、BD的中点,
∴CE=AC,DF=BD,
∴CE+DF=AC+BD=5(cm),
∴EF=CE+CD+DF=7(cm) .
【点睛】
本题考查了两点间距离,熟练掌握线段上两点间距离的求法,灵活应用中点的性质解题是关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的,下列说法中正确的是,下列四个说法等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题,共22页。试卷主要包含了如图,OM平分,,,则,下列四个说法,若的补角是,则的余角是等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后复习题,共21页。试卷主要包含了已知线段AB,已知,则∠A的补角等于,在数轴上,点M,如图,射线OA所表示的方向是,已知,则的补角等于等内容,欢迎下载使用。