2021学年第五章 基本平面图形综合与测试精品课后作业题
展开六年级数学下册第五章基本平面图形章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
2、如图,下列说法不正确的是( )
A.直线m与直线n相交于点D B.点A在直线n上
C.DA+DB<CA+CB D.直线m上共有两点
3、在下列生活、生产现象中,可以用基本事实“两点确定一条直线”来解释的是( )
①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.
A.①② B.①④ C.②③ D.③④
4、如图所示,若,则射线OB表示的方向为( ).
A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°
5、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( )
A.3 B.4 C.6 D.8
6、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )
A.4 B.5 C.10 D.14
7、已知,则∠A的补角等于( )
A. B. C. D.
8、下列四个说法:①射线AB和射线BA是同一条射线;②两点之间,线段最短;③和38.15°相等;④画直线AB=3cm;⑤已知三条射线OA,OB,OC,若,则射线OC是∠AOB的平分线.其中正确说法的个数为( )
A.1个 B.2个 C.3个 D.4个
9、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )
A. B. C. D.
10、如图,射线OA所表示的方向是( )
A.西偏南30° B.西偏南60° C.南偏西30° D.南偏西60°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、45°30'=_____°.
2、如果∠A=34°,那么∠A的余角的度数为_____°.
3、已知,则的补角的大小为_________.
4、如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.
5、阳阳在月月的西南方向200m处,则月月在阳阳的_____方向_____m处.
三、解答题(5小题,每小题10分,共计50分)
1、按要求作答:如图,已知四点A、B、C、D,请仅用直尺和圆规作图,保留画图痕迹.
(1)①画直线AB;
②画射线BC;
③连接AD并延长到点E,在射线AE上截取AF,使AF=AB+BC;
(2)在直线BD上确定一点P,使PA+PC的值最小,并写出画图的依据 .
2、已知:点O是直线AB上一点,过点O分别画射线OC,OE,使得.
(1)如图,OD平分.若,求的度数.请补全下面的解题过程(括号中填写推理的依据).
解:∵点O是直线AB上一点,
∴.
∵,
∴.
∵OD平分.
∴( ).
∴ °.
∵,
∴( ).
∵ ,
∴ °.
(2)在平面内有一点D,满足.探究:当时,是否存在的值,使得.若存在,请直接写出的值;若不存在,请说明理由.
3、已知∠AOB是直角,∠AOC是锐角,OC在∠AOB的内部,OD平分∠AOC,OE平分∠BOC.
(1)根据题意画出图形;
(2)求出∠DOE的度数;
(3)若将条件“∠AOB是直角”改为“∠AOB为锐角,且∠AOB=n°”,其它条件不变,请直接写出∠DOE的度数.
4、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.
(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m.
(2)燕化附中在燕山向阳小学的 方向.
(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.
5、如图,已知平面上三个点A,B,C,按要求完成下列作图(不写作法,只保留作图痕迹):
(1)作直线AC,射线BA;
(2)连接BC.并延长BC至点D,使CD=BC.
-参考答案-
一、单选题
1、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
2、D
【解析】
【分析】
根据直线相交、点与直线、两点之间线段最短逐项判断即可得.
【详解】
解:A、直线与直线相交于点,则此项说法正确,不符合题意;
B、点在直线上,则此项说法正确,不符合题意;
C、由两点之间线段最短得:,则此项说法正确,不符合题意;
D、直线上有无数个点,则此项说法不正确,符合题意;
故选:D.
【点睛】
本题考查了直线相交、点与直线、两点之间线段最短,熟练掌握直线的相关知识是解题关键.
3、B
【解析】
【分析】
直接利用直线的性质以及线段的性质分析求解即可.
【详解】
①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;
②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;
③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;
④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;
综上可得:①④可以用“两点确定一条直线”来解释,
故选:B.
【点睛】
此题主要考查了直线的性质以及线段的性质,正确把握相关性质是解题关键.
4、A
【解析】
【分析】
根据同角的余角相等即可得,,根据方位角的表示方法即可求解.
【详解】
如图,
即射线OB表示的方向为北偏东35°
故选A
【点睛】
本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.
5、B
【解析】
【分析】
根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.
【详解】
解:E、F分别是线段AC、AB的中点,
AC=2AE=2CE,AB=2AF=2BF,
EF=AE﹣AF=2
2AE﹣2AF=AC﹣AB=2EF=4,
BC=AC﹣AB=4,
故选:B.
【点睛】
本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.
6、C
【解析】
【分析】
设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.
【详解】
∵AC:CD:DB=2:3:4,
∴设AC=2x,CD=3x,DB=4x,
∴AB=9x,
∵AB=18,
∴x=2,
∴AD=2x+3x=5x=10,
故选:C.
【点睛】
本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.
7、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
8、A
【解析】
【分析】
根据射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质解答即可.
【详解】
解:①射线AB和射线BA表示不是同一条射线,故此说法错误;
②两点之间,线段最短,故此说法正确;
③38°15'≠38.15°,故此说法错误;
④直线不能度量,所以“画直线AB=3cm”说法是错误的;
⑤已知三条射线OA,OB,OC,若,则OC不一定在∠AOB的内部,故此选项错误;
综上所述,正确的是②,
故选:A.
【点睛】
本题考查了射线的性质;数轴上两点间的距离的定义;角平分线的定义,线段的性质等知识,解题的关键是了解直线的性质;数轴上两点间的距离的定义等.
9、B
【解析】
【分析】
根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.
【详解】
解:∵∠ABE=45°,
∴∠CBE=45°,
∴∠CBG=45°,
∵∠GBH=30°,
∴∠FBG=60°,
∴∠FBC=∠FBG-∠CBG=60°-45°=15°.
故选B.
【点睛】
此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.
10、D
【解析】
【详解】
解:,
根据方位角的概念,射线表示的方向是南偏西60度.
故选:D.
【点睛】
本题主要考查了方向角.解题的关键是弄清楚描述方向角时,一般先叙述北或南,再叙述偏东或偏西.
二、填空题
1、45.5
【解析】
【分析】
先将化为度数,然后与整数部分的度数相加即可得.
【详解】
解:
.
故答案为:.
【点睛】
题目主要考查角度的变换,熟练掌握角度之间的变换进率是解题关键.
2、56
【解析】
【分析】
根据余角的定义即可求得.
【详解】
解:∠A的余角为90°−∠A=90°−34°=56°
故答案为:56
【点睛】
本题考查了余角的定义,掌握余角的定义是关键,这是基础题.
3、
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角为:.
故答案为:
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
4、55
【解析】
【分析】
根据余角的定义及等角的余角相等即可求解.
【详解】
解:∵∠1与∠2互余,
∴∠1+∠2=90°,
∵∠3与∠4互余,
∴∠3+∠4=90°,
又∠1=∠3,
∴∠2=∠4=55°,
故答案为:55.
【点睛】
本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.
5、 东北 200
【解析】
【分析】
根据方向角的定义解答即可.
【详解】
解:阳阳在月月的西南方向m处,则月月在阳阳的东北方向m处.
故答案为:东北,200.
【点睛】
本题考查方向角,解题的关键是理解题意,灵活运用所学知识解决问题.
三、解答题
1、 (1)①见解析,②见解析,③见解析
(2)图见解析,两点之间,线段最短
【解析】
【分析】
(1)①连接AB作直线即可;②连接BC并延长即为射线BC;③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,即可得出依据.
(1)
①如图所示:连接AB作直线即可;
②连接BC并延长即为射线BC;
③连接AD并延长到点E,以点A为圆心,AB为半径画弧交AE于点G,以点G为圆心,BC长为半径画弧交AE于点F,AF即为所求;
(2)
画直线BD,连接AC交BD于点P,根据两点之间,线段最短,点P即为所求,
故答案为:两点之间,线段最短.
【点睛】
题目主要考查直线、射线、线段的作法,两点之间线段最短等,理解题意,结合图形熟练运用基础知识点是解题关键.
2、(1)角平分线的定义;70;垂直的定义;DOC;EOC;160;(2)存在,的值为120°或144°或
【解析】
【分析】
(1)根据角平分线的定义和垂直定义,结合所给解题过程进行补充即可;
(2)分三种情况讨论:①点D,C,E在AB上方时,②当点D在AB的下方,C,E在AB上方时,③如图,当D在AB上方,E,C在AB下方时,用含有α的式子表示出和∠BOE,由列式求解即可.
【详解】
解:(1)∵点O是直线AB上一点,
∴.
∵,
∴.
∵OD平分.
∴( 角平分线的定义 ).
∴ 70 °.
∵,
∴( 垂直的定义 ).
∵ DOC EOC ,
∴ 160 °.
故答案为:角平分线定义;70;垂直的定义;DOC;EOC;160;
(2)存在, 或144°或
①点D,C,E在AB上方时,如图,
∵,
∴
∵
∴
∵
∴
∴
②当点D在AB的下方,C,E在AB上方时,如图,
∵
∴
∵
∴
∴
∵
∴
∴
③如图,当D在AB上方,E,C在AB下方时,
同理可得:
,
解得:
综上,的值为120°或144°或
【点睛】
本题主要考查角平分线和补角,熟练掌握角平分线的定义和补角的定义是解题的关键.
3、 (1)见解析
(2)45°
(3)n°
【解析】
【分析】
(1)根据要求画出图形即可;
(2)利用角平分线的定义计算即可;
(3)利用(2)中,结论解决问题即可.
(1)
解:图形如图所示.
,
(2)
解:∵OD平分∠AOC,OE平分∠BOC,
∴∠DOC=∠AOC,∠EOC=∠BOC,
∴∠DOE=(∠AOC+∠BOC)=∠AOB,
∵∠AOB=90°,
∴∠DOE=45°;
(3)
解:当∠AOB为锐角,且∠AOB=n°时,由(2)可知∠DOE=n°.
【点睛】
本题考查作图-复杂作图,角平分线的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、 (1)正西,100
(2)南偏东77°
(3)见解析
【解析】
【分析】
(1)根据图中位置解决问题即可.
(2)根据图中位置解决问题即可.
(3)根据题意画出路线即可.
(1)
燕山前进二小在燕山前进中学的正西方向,距离大约是.
故答案为:正西,100.
(2)
燕化附中在燕山向阳小学的南偏东方向
故答案为:南偏东.
(3)
小辰行走的路线如图:
【点睛】
本题考查作图应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.
5、 (1)见解析
(2)见解析
【解析】
【分析】
(1)根据直线、射线的定义画图即可;
(2)在BC的延长线上截取CD=BC即可.
(1)
解:如图,直线AC,射线BA即为所作;
(2)
解:如图,线段CD即为所作.
【点睛】
本题考查了直线、射线、线段的作图,熟练掌握作一条线段等于已知线段是解答本题的关键.
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课堂检测: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品课堂检测,共23页。试卷主要包含了已知,则的补角的度数为,如果A等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品同步达标检测题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品同步达标检测题,共21页。试卷主要包含了下列命题中,正确的有,用度,在9,如图,点在直线上,平分,,,则等内容,欢迎下载使用。
数学六年级下册第五章 基本平面图形综合与测试精品同步练习题: 这是一份数学六年级下册第五章 基本平面图形综合与测试精品同步练习题,共23页。试卷主要包含了如图所示,B,下列说法中正确的是等内容,欢迎下载使用。