鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精品同步测试题
展开六年级数学下册第五章基本平面图形同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、延长线段至点,分别取、的中点、.若,则的长度( )
A.等于 B.等于 C.等于 D.无法确定
2、如图所示,若,则射线OB表示的方向为( ).
A.北偏东35° B.东偏北35° C.北偏东55° D.北偏西55°
3、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
4、如图,木工师傅过木板上的A,B两点,弹出一条笔直的墨线,这种操作所蕴含的数学原理是( )
A.过一点有无数条直线 B.两点确定一条直线
C.两点之间线段最短 D.线段是直线的一部分
5、如图所示,B、C是线段AB上任意两点,M是AB的中点,N是CD的中点,若,,则线段AD的长是( )
A.15 B.17 C.19 D.20
6、如果线段,,那么下面说法中正确的是( )
A.点在线段上 B.点在直线上
C.点在直线外 D.点可能在直线上,也可能在直线外
7、已知∠α=125°19′,则∠α的补角等于( )
A.144°41′ B.144°81′ C.54°41′ D.54°81′
8、如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是( )
A.北偏西55° B.北偏东65° C.北偏东35° D.北偏西35°
9、如图,将三个三角板直角顶点重叠在一起,公共的直角顶点为点,若,,那么的度数为( )
A. B. C. D.
10、已知,则∠A的补角等于( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、钟表4点36分时,时针与分针所成的角为______度.
2、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
3、如图,在一条笔直的马路(直线l)两侧各有一个居民区(点M,N),如果要在这条马路旁建一个购物中心,使购物中心到这两个小区的距离之和最小,那么购物中心应建在线段MN与直线l的交点P处,这样做的依据是_______.
4、同一直线上有两条线段(A在B的左边,C在D的左边),M,N分别是的中点,若,,则_________.
5、如图所示的网格是正方形网格,∠BAC_____∠DAE.(填“>”,“=”或“<”)
三、解答题(5小题,每小题10分,共计50分)
1、在数轴上,点A表示的数为1,点B表示的数为3.对于数轴上的图形M,给出如下定义:P为图形M上任意一点,Q为线段AB上任意一点,如果线段PQ的长度有最小值,那么称这个最小值为图形M关于线段AB的极小距离,记作d1(M,线段AB);如果线段PQ的长度有最大值,那么称这个最大值为图形M关于线段AB的极大距离,记作d2(M,线段AB).例如:点K表示的数为4,则d1(点K,线段AB)=1,d2(点K,线段AB)=3.
已知点O为数轴原点,点C,D为数轴上的动点.
(1)d1(点O,线段AB)= ,d2(点O,线段AB)= ;
(2)若点C,D表示的数分别为m,m+2,d1(线段CD,线段AB)=2.求m的值;
(3)点C从原点出发,以每秒2个单位长度沿x轴正方向匀速运动;点D从表示数﹣2的点出发,第1秒以每秒2个单位长度沿x轴正方向匀速运动,第2秒以每秒4个单位长度沿x轴负方向匀速运动,第3秒以每秒6个单位长度沿x轴正方向匀速运动,第4秒以每秒8个单位长度沿x轴负方向匀速运动,…,按此规律运动,C,D两点同时出发,设运动的时间为t秒,若d2(线段CD,线段AB)小于或等于6,直接写出t的取值范围.(t可以等于0)
2、如图,已知线段AB
(1)请按下列要求作图:
①延长线段AB到C,使;
②延长线段BA到D,使;
(2)在(1)条件下,请直接回答线段BD与线段AC之间的数量关系;
(3)在(1)条件下,如果AB=2cm,请求出线段BD和CD的长度.
3、如图,在同一直线上,有A、B、C、D四点.已知DB=AD,AC=CD,CD=4cm,求线段AB的长.
4、【概念与发现】
当点C在线段AB上,时,我们称n为点C在线段AB上的“点值”,记作.
例如,点C是AB的中点时,即,则;
反之,当时,则有.
因此,我们可以这样理解:“”与“”具有相同的含义.
【理解与应用】
(1)如图,点C在线段AB上.若,,则________;
若,则________AB.
【拓展与延伸】
(2)已知线段,点P以1cm/s的速度从点A出发,向点B运动.同时,点Q以3cm/s的速度从点B出发,先向点A方向运动,到达点A后立即按原速向点B方向返回.当P,Q其中一点先到达终点时,两点均停止运动.设运动时间为t(单位:s).
①小王同学发现,当点Q从点B向点A方向运动时,的值是个定值,则m的值等于________;
②t为何值时,.
5、如图,两条直线AB,CD相交于点O,且∠AOC=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为15°/s,射线ON同时从OD开始绕O点顺时针方向旋转,速度为12°/s.两条射线OM,ON同时运动,运动时间为t秒.(本题出现的角均小于平角)
(1)当t=2时,∠MON=_______,∠AON=_______;
(2)当0<t<12时,若∠AOM=3∠AON=60°.试求出t的值;
(3)当0<t<6时,探究的值,问:t满足怎样的条件是定值;满足怎样的条件不是定值?
-参考答案-
一、单选题
1、B
【解析】
【分析】
由题意知,如图分两种情况讨论①②;用已知线段表示求解即可.
【详解】
解:由题意知
①如图1
∵,
∴;
②如图2
∵,
∴;
综上所述,
故选B.
【点睛】
本题考查了线段中点.解题的关键在于正确的找出线段的数量关系.
2、A
【解析】
【分析】
根据同角的余角相等即可得,,根据方位角的表示方法即可求解.
【详解】
如图,
即射线OB表示的方向为北偏东35°
故选A
【点睛】
本题考查了方位角的计算,同角的余角相等,掌握方位角的表示方法是解题的关键.
3、B
【解析】
【分析】
先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.
【详解】
解:根据题意,画出图形,如图所示:
设 ,则 ,
∵点D是线段AC的中点,
∴ ,
∴ ,
∴AB=BD,即点B是线段AD的中点,故①正确;
∴BD=CD,故②正确;
∴AB=CD,故③错误;
∴ ,
∴BC﹣AD=AB,故④正确;
∴正确的有①②④.
故选:B
【点睛】
本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.
4、B
【解析】
【分析】
根据“经过两点有且只有一条直线”即可得出结论.
【详解】
解:∵经过两点有且只有一条直线,
∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.
∴能解释这一实际应用的数学知识是两点确定一条直线.
故选:B.
【点睛】
本题考查了直线的性质,掌握“经过两点有且只有一条直线”是解题的关键.
5、D
【解析】
【分析】
由M是AB的中点,N是CD的中点,可得先求解 从而可得答案.
【详解】
解: M是AB的中点,N是CD的中点,
故选D
【点睛】
本题考查的是线段的中点的含义,线段的和差运算,熟练的利用线段的和差关系建立简单方程是解本题的关键.
6、D
【解析】
【分析】
根据,MA+MB=13cm,得点M的位置不能在线段AB上,由此得到答案.
【详解】
解:∵,MA+MB=13cm,
∴点可能在直线上,也可能在直线外,
故选:D.
【点睛】
此题考查了线段的和差关系,点与直线的位置关系,理解题意是解题的关键.
7、C
【解析】
【分析】
两个角的和为 则这两个角互为补角,根据互为补角的含义列式计算即可.
【详解】
解: ∠α=125°19′,
∠α的补角等于
故选C
【点睛】
本题考查的是互补的含义,掌握“两个角的和为 则这两个角互为补角”是解本题的关键.
8、D
【解析】
【分析】
如图,根据两船同时出发,同速行驶,假设相撞时得到AC=BC,求出∠CBA=∠CAB=90°-35°=55°,
即可得到答案.
【详解】
解:假设两船相撞,如同所示,
根据两船的速度相同可得AC=BC,
∴∠CBA=∠CAB=90°-35°=55°,
∴乙的航向不能是北偏西35°,
故选:D.
【点睛】
此题考查了方位角的表示方法,角度的运算,正确理解题意是解题的关键.
9、B
【解析】
【分析】
根据∠ABE=45°,由角的和差关系求出∠CBG,再根据∠GBH=30°,由角的和差关系求出∠FBG,最后根据∠FBC=∠FBG-∠CBG进行计算即可.
【详解】
解:∵∠ABE=45°,
∴∠CBE=45°,
∴∠CBG=45°,
∵∠GBH=30°,
∴∠FBG=60°,
∴∠FBC=∠FBG-∠CBG=60°-45°=15°.
故选B.
【点睛】
此题考查了角的和差计算,关键是根据已知条件求出角的度数,要能根据图形找出角之间的关系.
10、C
【解析】
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
二、填空题
1、78
【解析】
【分析】
因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助钟表,找出10时20分时针和分针之间相差的大格数,用大格数乘30°即可.
【详解】
解:因为时针在钟面上每分钟转360÷12÷60=0.5(度),分针每分钟转360÷60=6(度),
所以钟表上4时36分时,时针与分针的夹角可以看成:
时针转过4时0.5°×36=18°,分针转过7时6°×1=6°.
因为钟表12个数字,每相邻两个数字之间的夹角为30°,
所以4时36分时,分针与时针的小的夹角3×30°-18°+6°=78°.
故在14时36分,时针和分针的夹角为78°.
故答案为:78.
【点睛】
本题考查钟面角的相关计算;用到的知识点为:时针每分钟走0.5度;钟面上两个相邻数字之间相隔30°.
2、140
【解析】
【分析】
先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
【详解】
解:由题意,可得∠AOB=40°,
则∠AOB的补角的大小为:180°−∠AOB=140°.
故答案为:140.
【点睛】
本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
3、两点之间,线段最短
【解析】
【分析】
根据两点之间线段最短即可求出答案.
【详解】
解:依据是两点之间,线段最短,
故答案为:两点之间,线段最短.
【点睛】
本题考查作图问题,解题的关键是正确理解两点之间线段最短,本题属于基础题型.
4、17
【解析】
【分析】
根据A在B的左边,C在D的左边,M,N分别是的中点,得出AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况,当点B在NM上,设AM=BM=x,得出BN=MN-BM=5-x,ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,CM=7-x, 得出ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,MC=BM-BC=x-7,得出CN=DN=MN-MC=5-(x-7)=12-x,可求AD=AM+MN+ND=x+5+12-x=17即可.
【详解】
解:∵A在B的左边,C在D的左边,M,N分别是的中点,
∴AM=BM,CN=DN,
当点B在点C的右边时满足条件,分三种情况:
当点B在NM上,设AM=BM=x,
∴BN=MN-BM=5-x,
∴CN=BC+BN=7+5-x=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当MN在BC上,设AM=BM=x,
∴BN=x-5,CM=7-x,
∴CN=CM+MN=7-x+5=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当点C在MN上,设AM=BM=x,
∴MC=BM-BC=x-7,
∴CN=DN=MN-MC=5-(x-7)=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
综合得AD=17.
故答案为17.
【点睛】
本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.
5、<
【解析】
【分析】
在Rt△ABC中,可知∠BAC的度数小于45°,在Rt△ADE中,可知∠DAE=45°,进而判断出∠BAC与∠DAE的大小.
【详解】
解:由图可知,在Rt△ABC中,BA=3BC,
∴∠BAC的度数小于45°,
在Rt△ADE中,可知DA=DE,
∴∠DAE=45°,
∴∠BAC<∠DAE,
故答案为:<.
【点睛】
本题考查角的大小比较,解题的关键是根据网格图得到两个直角三角形边的关系即可.
三、解答题
1、 (1)1,3
(2)﹣3或5
(3)或
【解析】
【分析】
(1)根据定义即可求得答案;
(2)由题意易得CD=2,然后分两种情况讨论m的值,即当CD在AB的左侧时和当CD在AB的右侧时;
(3)由题意可分当t=0时,点C表示的数为0,点D表示的数为﹣2,当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,当t=5时,点C表示的数为10,点D表示的数为4,当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,进而问题可求解.
(1)
解:d1(点O,线段AB)=OA=1﹣0=1,d2(点O,线段AB)=OB=3﹣0=3,
故答案为:1,3;
(2)
解:∵点C,D表示的数分别为m,m+2,
∴点D在点C的右侧,CD=2,
当CD在AB的左侧时,d1(线段CD,线段AB)=DA=1﹣(m+2)=2,
解得:m=﹣3,
当CD在AB的右侧时,d1(线段CD,线段AB)=BC=m﹣3=2,
解得:m=5,
综上所述,m的值为﹣3或5;
(3)
解:当t=0时,点C表示的数为0,点D表示的数为﹣2,则d2=5,
当0<t≤1时,点C表示的数为2t,点D表示的数为﹣2+2t,则d2=5﹣2t<6,
当1<t≤2时,点C表示的数为2t,点D表示的数为﹣4t+4,则d2=4t﹣1≤6,
解得:t≤,
当2<t≤3时,点C表示的数为2t,点D表示的数为6t﹣16,则d2=19﹣6t≤6,
解得:t≥,
当3<t≤4时,点C表示的数为2t,点D表示的数为﹣8t+26,则d2=8t﹣23≤6或2t﹣1≤6,
解得:t≤,
当t=5时,点C表示的数为10,点D表示的数为4,则d2=AC=10﹣1=9>6,
当4<t≤5时,点C表示的数为2t(8<2t≤10),点D表示的数为10t﹣46,(﹣6<10t﹣46≤4),
∴0≤BD≤9,7≤AC≤9,
∴d2>6,不符合题意,
综上所述,d2(线段CD,线段AB)小于或等于6时,0≤t≤或≤t≤.
【点睛】
本题考查了学生对新定义的理解及分类讨论的应用,正确理解定义及准确的分类是解决本题的关键.
2、 (1)①画图见解析;②画图见解析
(2)BD=1.5AC;
(3)cm,cm
【解析】
【分析】
(1)①先延长 再作即可;②先延长 再作即可;
(2)先证明 从而可得答案;
(3)由 结合 从而可得答案.
(1)
解:如图所示,BC、AD即为所求;
(2)
解:
(3)
解:∵AB=2cm,
∴AC=2AB=4cm,
∴AD=4cm,
∴BD=4+2=6cm,
∴CD=2AD=8cm.
【点睛】
本题考查的是作一条线段等于已知线段,线段的和差运算,熟练的利用作图得到的已知信息求解未知信息是解本题的关键.
3、
【解析】
【分析】
根据,求出、的长度,再根据即可求解.
【详解】
解:,,
,
,
,
.
【点睛】
本题考查两点间的距离,解题的关键是根据条件先利用线段之间的关系得出线段、.
4、 (1),
(2)①3;②2或6
【解析】
【分析】
(1)根据“点值”的定义即可得出答案;
(2)①设运动时间为t,再根据的值是个定值即可得出m的值;
②分点Q从点B向点A方向运动时和点Q从点A向点B方向运动时两种情况加以分析即可
(1)
解:∵,,
∴
∴,
∵,
∴
(2)
解:①设运动时间为t,则AP=t,AQ=10-3t,
则,
∵的值是个定值,
∴的值是个定值,
∴m=3
②当点Q从点B向点A方向运动时,
∵
∴
∴t=2
当点Q从点A向点B方向运动时,
∵
∴
∴t=6
∴t的值为2或6
【点睛】
本题考查了一元一次方程的应用,理解新定义,并能运用是本题的关键.
5、 (1)144°,66°
(2)秒或10秒
(3)当0<t<时,的值是1;当<t<6时,的值不是定值
【解析】
【分析】
(1)根据时间和速度分别计算∠BOM和∠DON的度数,再根据角的和与差可得结论;
(2)分两种情况:①如图所示,当0<t≤7.5时,②如图所示,当7.5<t<12时,分别根据已知条件列等式可得t的值;
(3)分两种情况,分别计算∠BON、∠COM和∠MON的度数,代入可得结论.
(1)
由题意得:
当t=2时,
∠MON=∠BOM+∠BOD+∠DON=2×15°+90°+2×12°=144°,
∠AON=∠AOD-∠DON=90°-24°=66°,
故答案为:144°,66°;
(2)
当ON与OA重合时,t=90÷12=7.5(s)
当OM与OA重合时,t=180°÷15=12(s)
如图所示,①当0<t≤7.5时,∠AON=90°-12t°,∠AOM=180°-15t°
由∠AOM=3∠AON-60°,可得180-15t=3(90-12t)-60,解得t=,
②当7.5<t<12时,∠AON=12t°-90°,∠AOM=180°-15t°,
由∠AOM=3∠AON-60°,可得180-15t=3(12t-90)-60,解得t=10,
综上,t的值为秒或10秒;
(3)
当∠MON=180°时,∠BOM+∠BOD+∠DON=180°,
∴15t+90+12t=180,解得t=,
如图所示,①当0<t<时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=∠BOM+∠BOD+∠DON=15t°+90°+12t°,
∴(定值),
②当<t<6时,∠COM=90°-15t°,∠BON=90°+12t°,
∠MON=360°-(∠BOM+∠BOD+∠DON)=360°-(15t°+90°+12t°)=270°-27t°,
,
∴(不是定值).
综上所述,当0<t<时,的值是1;当<t<6时,的值不是定值.
【点睛】
本题主要考查了一元一次方程的应用,角的和差关系的计算,解决问题的关键是将相关的角用含t的代数式表示出来,并根据题意列出方程进行求解,以及进行分类讨论,解题时注意方程思想和分类思想的灵活运用.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课时训练,共21页。试卷主要包含了若,则的补角的度数为,下列说法中正确的是等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试同步练习题,共26页。试卷主要包含了下列现象,延长线段至点,分别取,如图所示,B,在数轴上,点M等内容,欢迎下载使用。
六年级下册第五章 基本平面图形综合与测试同步达标检测题: 这是一份六年级下册第五章 基本平面图形综合与测试同步达标检测题,共21页。试卷主要包含了已知,则的补角的度数为,如图,D等内容,欢迎下载使用。