![2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形专题攻克试卷(无超纲)01](http://www.enxinlong.com/img-preview/2/3/12734136/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形专题攻克试卷(无超纲)02](http://www.enxinlong.com/img-preview/2/3/12734136/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新精品解析鲁教版(五四制)六年级数学下册第五章基本平面图形专题攻克试卷(无超纲)03](http://www.enxinlong.com/img-preview/2/3/12734136/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题
展开六年级数学下册第五章基本平面图形专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面上有三个点A,B,C,如果,,,则( )
A.点C在线段AB的延长线上 B.点C在线段AB上
C.点C在直线AB外 D.不能确定
2、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )
A.两点之间,线段最短 B.两点确定一条直线
C.过一点,有无数条直线 D.连接两点之间的线段叫做两点间的距离
3、如图,在的内部,且,若的度数是一个正整数,则图中所有角的度数之和可能是( )
A.340° B.350° C.360° D.370°
4、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
5、①直线AB和直线BA是同一条直线;②平角等于180°;③一个角是70°39',它的补角是19°21';④两点之间线段最短;以上说法正确的有( )
A.②③④ B.①②④ C.③④ D.①
6、能解释:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是( )
A.垂线段最短 B.两点确定一条直线
C.两点之间线段最短 D.同角的补角相等
7、把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是( )
A.两点确定一条直线 B.两点之间,线段最短
C.两点之间,直线最短 D.线段比直线短
8、如图,一副三角板(直角顶点重合)摆放在桌面上,若∠BOC=20°,则∠AOD等于( )
A.160° B.140° C.130° D.110°
9、如图所示,点E、F分别是线段AC、AB的中点,若EF=2,则BC的长为( )
A.3 B.4 C.6 D.8
10、在9:30这一时刻,时钟上的时针和分针之间的夹角为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、钟面上4时30分,时针与分针的夹角是______度,15分钟后时针与分针的夹角是_____度.
2、如图,从O点引出6条射线,且,,分别是的平分线.则的度数为___________度.
3、的余角等于__________.
4、点A、B、C三点在同一条直线上,AB=10cm,BC=6cm,则AC =___ cm.
5、如图,在灯塔O处观测到轮船A位于北偏西53°的方向,同时轮船B在南偏东17°的方向,那么______°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,∠AOB是平角,,,OM、ON外别是∠AOC、∠BOD的平分线,求∠MON的度数.
2、如图,将两块三角板的直角顶点重合.
(1)写出以C为顶点相等的角;
(2)若∠ACB=150°,求∠DCE的度数.
3、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为的“三倍距点”,当CB=3CA时,我们称C为的“三倍距点”, 点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b﹣5|=0.
(1)a= ,b= ;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C表示的数为 ;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为秒,当为M,N两点的“三倍距点”时,求t的值.
4、如图甲,已知线段,,线段CD在线段AB上运动,E,F分别是AC,BD的中点.
(1)若,则______;
(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由;
(3)①对于角,也有和线段类似的规律.如图乙,已知在内部转动,OE,OF分别平分和,若,,求;
②请你猜想,和会有怎样的数量关系,直接写出你的结论.
5、点O为直线AB上一点,在直线AB同侧任作射线OC,OD,使得∠COD=90°.
(1)如图1,过点O作射线OE,使OE为∠AOC的角平分线,当∠COE=25°时,∠BOD的度数为 ;
(2)如图2,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,求∠EOF的度数;
(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,当∠EOF=10°时,求∠BOD的度数.
-参考答案-
一、单选题
1、B
【解析】
【分析】
本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.
【详解】
解:如图:
∵AB=8,AC=5,BC=3,
从图中我们可以发现AC+BC=AB,
所以点C在线段AB上.
故选:B.
【点睛】
本题考查了直线、射线、线段,在此类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.
2、A
【解析】
【分析】
根据两点之间线段最短的性质解答.
【详解】
解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选:A.
【点睛】
此题考查了实际生活中两点之间线段最短的应用,正确理解图形的特点与线段的性质结合是解题的关键.
3、B
【解析】
【分析】
根据角的运算和题意可知,所有角的度数之和是∠AOB+∠BOC+∠COD+∠AOC+∠BOD+
∠AOD,然后根据,的度数是一个正整数,可以解答本题.
【详解】
解:由题意可得,图中所有角的度数之和是
∠AOB+∠BOC+∠COD+∠AOC+∠BOD+∠AOD=3∠AOD+∠BOC
∵,的度数是一个正整数,
∴A、当3∠AOD+∠BOC=340°时,则= ,不符合题意;
B、当3∠AOD+∠BOC=3×110°+20°=350°时,则=110°,符合题意;
C、当3∠AOD+∠BOC=360°时,则=,不符合题意;
D、当3∠AOD+∠BOC=370°时,则=,不符合题意.
故选:B.
【点睛】
本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件.
4、B
【解析】
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
5、B
【解析】
【分析】
根据直线的表示方法,平角,补角,线段的性质逐个判断即可.
【详解】
①直线AB和直线BA是同一条直线,正确
②平角等于180°,正确
③一个角是70°39',它的补角应为:,所以错误
④两点之间线段最短,正确
故选B
【点睛】
本题考查直线的表示方法,平角,补角,线段的性质等知识点,熟练掌握以上知识点是解题的关键.
6、B
【解析】
【分析】
根据两点确定一条直线解答即可.
【详解】
解:“用两个钉子就可以把木条固定在墙上”这实际问题的数学知识是:两点确定一条直线,
故选B.
【点睛】
本题考查了直线的性质,熟练掌握两点确定一条直线是解答本题的关键.
7、B
【解析】
【分析】
由把弯曲的河道改直,就缩短了河道的长度,涉及的知识点与距离相关,从而可以两点之间,线段最短来解析.
【详解】
解:把弯曲的河道改直,就能缩短河道长度.可以解释这一做法的数学原理是
两点之间,线段最短.
故选:B
【点睛】
本题考查的是两点之间,线段最短,掌握“利用两点之间线段最短解析生活现象”是解本题的关键.
8、A
【解析】
【分析】
如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.
【详解】
解:∵∠AOB=∠COD=90°,∠BOC=20°,
∴∠AOD=∠AOB+∠COD-∠BOC=90°+90°-20°=160°.
故选:A.
【点睛】
此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.
9、B
【解析】
【分析】
根据线段的中点,可得AE与AC的关系,AF与AB的关系,根据线段的和差,可得答案.
【详解】
解:E、F分别是线段AC、AB的中点,
AC=2AE=2CE,AB=2AF=2BF,
EF=AE﹣AF=2
2AE﹣2AF=AC﹣AB=2EF=4,
BC=AC﹣AB=4,
故选:B.
【点睛】
本题考查了两点间的距离,根据中点的性质求出线段AC-AB=4是解题关键.
10、A
【解析】
【分析】
根据时针与分针相距的份数乘以每份的度数,可得答案.
【详解】
解:9:30时针与分针相距3.5份,每份的度数是30°,
在时刻9:30,时钟上时针和分针之间的夹角(小于平角的角)为3.5×30°=105°.
故选:A.
【点睛】
本题考查了钟面角,利用时针与分针相距的份数乘以每份的度数是解题关键.
二、填空题
1、 45° 127.5°
【解析】
【分析】
根据时钟上一大格是30°,时针每分钟转0.5°进行计算即可.
【详解】
解:根据题意:钟面上4时30分,时针与分针的夹角是 ;
15分钟后时针与分针的夹角是 .
故答案为:45°,127.5°
【点睛】
本题考查了钟面角,熟练掌握时钟上一大格是30°,时针每分钟转0.5°是解题的关键.
2、35
【解析】
【分析】
根据分别是的平分线.得出∠AOE=∠DOE,∠BOF=∠COF,可得∠AOE+∠BOF=∠DOE+∠COF=∠EOF-∠COD=155°-∠COD,根据周角∠AOB+∠AOE+∠BOF+∠EOF=360°,得出85°+155°-∠COD+155°=360°,解方程即可.
【详解】
解:∵分别是的平分线.
∴∠AOE=∠DOE,∠BOF=∠COF,
∴∠AOE+∠BOF=∠DOE+∠COF=∠EOF-∠COD=155°-∠COD,
∵∠AOB+∠AOE+∠BOF+∠EOF=360°,
∴85°+155°-∠COD+155°=360°,
解得∠COD=35°.
故答案为35.
【点睛】
本题考查角平分线有关的计算,角的和差,周角性质,一元一次方程,掌握角平分线有关的计算,角的和差,周角性质,一元一次方程是解题关键.
3、
【解析】
【分析】
根据和为90°的两个角互为余角解答即可.
【详解】
解:的余角等于90°-=,
故答案为:.
【点睛】
本题考查求一个角的余角,会进行度分秒的运算,熟知余角定义是解答的关键.
4、16或4##4或16
【解析】
【分析】
分两种情况讨论,当在的右边时,当在的左边时,再结合线段的和差可得答案.
【详解】
解:如图,当在的右边时,AB=10cm,BC=6cm,
cm,
如图,当在的左边时,AB=10cm,BC=6cm,
cm,
故答案为:16或4
【点睛】
本题考查的是线段的和差关系,利用C的位置进行分类讨论是解本题的关键.
5、144
【解析】
【分析】
先根据题意可得∠AOD=90°-53°=37°,再根据题意可得∠EOB=17°,然后再根据角的和差关系可得答案.
【详解】
解:如图,
∵在灯塔O处观测到轮船A位于北偏西53°的方向,
∴∠AOC=53°,
∴∠AOD=90°-53°=37°,
∵轮船B在南偏东17°的方向,
∴∠EOB=17°,
∴∠AOB=37°+90°+17°=144°,
故答案为:144.
【点睛】
此题主要考查了方向角,关键是掌握方位角以正南或正北方向作方位角的始边,另一边则表示对象所处的方向的射线.
三、解答题
1、
【解析】
【分析】
根据角平分线的定义求出,再用平角减去即可得到结果.
【详解】
解:∵∠AOB是平角,
∴
∵OM、ON外别是∠AOC、∠BOD的平分线,且∠AOC=80°,∠BOD=30°,
∴,,
∴∠MON=∠AOB-∠AOM-∠BON=180°-40°-15°=125°.
【点睛】
本题主要考查了角的平分线的有关计算,性质、角的和差等知识点.解决本题亦可利用:∠MON=∠COD+∠COM+∠DON.
2、 (1)∠ACE=∠BCD,∠ACD=∠ECB
(2)30°
【解析】
【分析】
(1)根据余角的性质即可得到结论;
(2)根据角的和差即可得到结论.
(1)
∵∠ACD=∠BCE=90°,
∴∠ACE+∠DCE=∠BCD+∠DCE=90°,
∴∠ACE=∠BCD;∠ACD=∠ECB=90°
(2)
∵∠ACB=150°,∠BCE=90°,
∴∠ACE=150°-90°=60°.
∴∠DCE=90°-∠ACE=90°-60°=30°
【点睛】
本题考查了余角和补角,关键是熟练掌握余角的性质,角的和差关系.
3、 (1)
(2)3
(3) 或或
【解析】
【分析】
(1)利用非负数的性质可得: 再解方程可得答案;
(2)由新定义可得 从而可得答案;
(3)当运动时间为秒时,对应的数为 对应的数为 根据新定义分两种情况讨论:当时,则 当时,则 再解方程可得答案.
(1)
解:
解得:
故答案为:
(2)
解: 点C在线段AB上,且为[A,B]的“三倍距点”,
点对应的数为:
故答案为:3
(3)
解:当运动时间为秒时,对应的数为 对应的数为
当时,则
或
解得:,而无解,
当时,则 即
或
解得:或
【点睛】
本题考查的是数轴上的动点问题,平方与绝对值非负性的应用,绝对值方程的应用,一元一次方程的应用,线段的和差倍分关系,熟练的利用方程解决动点问题是解本题的关键.
4、 (1)12
(2)不变;
(3)①90°;②
【解析】
【分析】
(1)根据线段中点推理表示EF的长度即可;
(2)根据,再根据中点进行推导即可;
(3)①根据再结合角平分线进行计算;
②由①可以得到结论.
(1)
∵E,F分别是AC,BD的中点,
∴EC=AC,DF=DB.
∴EC+DF=AC+DB= (AC+DB).
又∵AB=20cm,CD=4cm,
∴AC+DB=AB-CD=20-4=16(cm).
∴EC+DF= (AC+DB)=8(cm).
∴EF=EC+DF+CD=8+4=12(cm).
故答案为:12.
(2)
EF的长度不变.
(3)
①∵OE,OF分别平分和
∴∠EOC=∠AOC,∠DOF=∠DOB.
∴
∵
∴
②,理由如下:
∵OE,OF分别平分和
∴∠EOC=∠AOC,∠DOF=∠DOB.
∴
∵
∴
【点睛】
本题主要考查线段中点以及角平分线的定义,熟练掌握线段中点以及角平分线的定义是解决本题的关键.
5、 (1)40°
(2)135°
(3)55°或35°
【解析】
【分析】
(1)由角平分线定义可得,根据平角定义可得结论;
(2)由已知得出∠AOC+∠BOD=90°,由角平分线定义得出∠EOC=∠AOC,∠DOF=∠BOD,即可得出答案;
(3)分OF在OE的左侧和右侧两种情况讨论求解即可.
(1)
∵OE为∠AOC的角平分线,
∴
又∠COD=90°
∴
故答案为:40°
(2)
∵∠COD=90°,
∴∠AOC+∠BOD=90°,
∵OE为∠AOC的角平分线,OF平分∠BOD,
∴∠EOC=∠AOC,∠DOF=∠BOD,
∴∠EOF=∠COD+∠EOC+∠DOF=90°+(∠AOC+∠BOD)=90°+×90°=135°,
(3)
①如图
∵OF是的角平分线
∴
∵
∴
∵OC是的平分线
∴,
∴
②如图
同理可得∴,
∴
综上,的度数为55°或35°
【点睛】
本题考查了角的计算以及角平分线定义(把一个分成两个相等的角的射线);弄清各个角之间的关系是解题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精练: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试精练,共24页。试卷主要包含了如图,下列说法不正确的是,已知与满足,下列式子表示的角,下列现象,已知点C,在9等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试习题,共25页。试卷主要包含了在一幅七巧板中,有我们学过的,下列说法中正确的是,下列四个说法等内容,欢迎下载使用。
数学六年级下册第五章 基本平面图形综合与测试当堂检测题: 这是一份数学六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了在下列生活,上午10,如果A等内容,欢迎下载使用。