初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后作业题
展开六年级数学下册第五章基本平面图形专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若一个角为45°,则它的补角的度数为( )
A.55° B.45° C.135° D.125°
2、已知点C、D在线段AB上,且AC:CD:DB=2:3:4,如果AB=18,那么线段AD的长是( )
A.4 B.5 C.10 D.14
3、小明爸爸准备开车到园区汇金大厦,他在小区打开导航后,显示两地距离为,而导航提供的三条可选路线的长度分别为、、(如图),这个现象说明( )
A.两点之间,线段最短 B.垂线段最短
C.经过一点有无数条直线 D.两点确定一条直线
4、在数轴上,点M、N分别表示数m,n.则点M、N之间的距离为.已知点A,B,C,D在数轴上分别表示的数为a,b,c,d.且,则线段的长度为( )
A.4.5 B.1.5 C.6.5或1.5 D.4.5或1.5
5、若,则的补角的度数为( )
A. B. C. D.
6、延长线段AB到C,使得BC=3AB,取线段AC的中点D,则下列结论:①点B是线段AD的中点.②BD=CD,③AB=CD,④BC﹣AD=AB.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.②③④
7、已知,则的补角等于( )
A. B. C. D.
8、下列两个生活、生产中现象:①用两个钉子就可以把木条固定在墙;②植树时,只要定出两棵树的位置就能确定同一行树所在直线;③从A地到B地架设电线,总是尽可能沿着直线架设;④把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )
A.①② B.①③ C.②④ D.③④
9、已知,则的补角的度数为( )
A. B. C. D.
10、如图,已知O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,若OC是的平分线,则下列结论正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、将一副直角三角板按如图放置,使两直角重合,则∠1的度数为______.
2、如图所示的网格是正方形网格,∠BAC_____∠DAE.(填“>”,“=”或“<”)
3、如图,将一副三角板的直角顶点重合,摆放在桌面上,当∠AOC=__________时,AB所在直线与CD所在直线互相垂直.
4、如图,邮局在学校( )偏( )( )°方向上,距离学校是( )米.
5、同一直线上有两条线段(A在B的左边,C在D的左边),M,N分别是的中点,若,,则_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,、两点把线段分成三部分,,为的中点.
(1)判断线段与的大小关系,说明理由.
(2)若,求的长.
2、如图是燕山前进片区的学校分布示意图,请你认真观察并回答问题.
(1)燕山前进二小在燕山前进中学的 方向,距离大约是 m.
(2)燕化附中在燕山向阳小学的 方向.
(3)小辰从燕山向阳小学出发,沿正东方向走200m,右转进入岗南路,沿岗南路向南走150m,左转进入迎风南路,沿迎风南路向正东方向走450m到达燕化附中.请在图中画出小辰行走的路线,并标出岗南路和迎风南路的位置.
3、如图,O为直线AB上一点,,OD平分∠AOC,.
(1)图中小于平角的角有______个.
(2)求出∠BOD的度数.
(3)小明发现OE平分∠BOC,请你通过计算说明道理.
4、将一副三角板放在同一平面内,使直角顶点重合于点O.
(1)如图①,若,则_______,与的关系是_______;
(2)如图②,固定三角板不动,将三角板绕点O旋转到如图所示位置.
①(1)中你发现的与的关系是否仍然成立,请说明理由;
②如图②,若,在内画射线,设,探究发现随着x的值的变化,图中以O为顶点的角中互余角的对数也变化.请直接写出以O为顶点的角中互余角的对数有哪几种情况?并写出每一种情况相应的x的取值或取值范围.
5、如图1,在数轴上点A表示数a,点B表示数b,O为原点,AB表示点A和点B之间的距离,且a,b满足.
(1)若T为线段AB上靠近点B的三等分点,求线段OT的长度;
(2)如图2,若Q为线段AB上一点,C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),运动的时间为ts.若C、D运动到任意时刻时,总有,请求出AQ的长;
(3)如图3,E、F为线段OB上的两点,且满足,,动点M从A点、动点N从F点同时出发,分别以3个单位/s,1个单位/s的速度沿直线AB向右运动,是否存在某个时刻使得成立?若存在,求此时MN的长度;若不存在,说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵一个角为45°,
∴它的补角的度数为 .
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互补的两个角的和为180°是解题的关键.
2、C
【解析】
【分析】
设AC=2x,CD=3x,DB=4x,根据题意列方程即可得到结论.
【详解】
∵AC:CD:DB=2:3:4,
∴设AC=2x,CD=3x,DB=4x,
∴AB=9x,
∵AB=18,
∴x=2,
∴AD=2x+3x=5x=10,
故选:C.
【点睛】
本题考查了两点间的距离,线段的中点的定义,正确的理解题意是解题的关键.
3、A
【解析】
【分析】
根据两点之间线段最短,即可完成解答.
【详解】
由题意知,17.8km是两地的直线距离,而导航提供的三条可选路线长度是两地的非直线距离,此现象说明两点之间线段最短.
故选:A
【点睛】
本题考查了两点之间线段最短在实际生活中的应用,掌握这个结论是解答本题的关键.
4、C
【解析】
【分析】
根据题意可知与的距离相等,分在的左侧和右侧两种情况讨论即可
【详解】
解:①如图,当在点的右侧时,
,
②如图,当在点的左侧时,
,
综上所述,线段的长度为6.5或1.5
故选C
【点睛】
本题考查了数轴上两点的距离,数形结合分类讨论是解题的关键.
5、C
【解析】
【分析】
根据补角的性质,即可求解.
【详解】
解:∵,
∴的补角的度数为.
故选:C
【点睛】
本题主要考查了补角的性质,熟练掌握互为补角的两个角的和等于180°是解题的关键.
6、B
【解析】
【分析】
先根据题意,画出图形,设 ,则 ,根据点D是线段AC的中点,可得 ,从而得到 ,BD=CD,AB=CD, ,即可求解.
【详解】
解:根据题意,画出图形,如图所示:
设 ,则 ,
∵点D是线段AC的中点,
∴ ,
∴ ,
∴AB=BD,即点B是线段AD的中点,故①正确;
∴BD=CD,故②正确;
∴AB=CD,故③错误;
∴ ,
∴BC﹣AD=AB,故④正确;
∴正确的有①②④.
故选:B
【点睛】
本题主要考查了考查了线段的和与差,有关中点的计算,能够用几何式子正确表示相关线段间的关系,利用数形结合思想解答是解题的关键.
7、C
【解析】
【分析】
补角的定义:如果两个角的和是一个平角,那么这两个角互为补角,据此求解即可.
【详解】
解:∵,
∴的补角等于,
故选:C.
【点睛】
本题考查补角,熟知互为补角的两个角之和是180°是解答的关键.
8、D
【解析】
【分析】
分别利用直线的性质以及线段的性质分析得出答案.
【详解】
解:①用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;
③从A地到B地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;
④把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;
故选:D.
【点睛】
此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.
9、C
【解析】
【分析】
两个角的和为 则这两个角互补,利用补角的含义直接列式计算即可.
【详解】
解: ,
的补角
故选C
【点睛】
本题考查的是互为补角的含义,掌握“两个角的和为 则这两个角互补”是解本题的关键.
10、B
【解析】
【分析】
先求解利用角平分线的定义再求解从而可得答案.
【详解】
解:
平分
故选B
【点睛】
本题考查的是角的和差运算,角平分线的定义,熟练的运用角的和差关系探究角与角之间的关系是解本题的关键.
二、填空题
1、165°
【解析】
【分析】
由三角板得∠C=30°,得到∠BAC的度数,利用邻补角关系得到∠1的度数.
【详解】
解:如图,∵∠C=30°,
∴∠BAC=45°-30°=15°,
∴∠1=180°-∠BAC=165°,
故答案为:165°.
【点睛】
此题考查了三角板有关的计算,正确掌握三角板各角的度数及邻补角的定义是解题的关键.
2、<
【解析】
【分析】
在Rt△ABC中,可知∠BAC的度数小于45°,在Rt△ADE中,可知∠DAE=45°,进而判断出∠BAC与∠DAE的大小.
【详解】
解:由图可知,在Rt△ABC中,BA=3BC,
∴∠BAC的度数小于45°,
在Rt△ADE中,可知DA=DE,
∴∠DAE=45°,
∴∠BAC<∠DAE,
故答案为:<.
【点睛】
本题考查角的大小比较,解题的关键是根据网格图得到两个直角三角形边的关系即可.
3、105°或75°
【解析】
【分析】
分两种情况:①AB⊥CD,交DC延长线于E,OB交DC延长线于F,②AB⊥CD于G,OA交DC于H求出答案.
【详解】
解:①如图1,AB⊥CD,交DC延长线于E,OB交DC延长线于F,
∵∠B=45°,∠BEF=90°,
∴∠CFO=∠BFE=45°,
∵∠DCO=60°,
∴∠COF=15°
∴∠AOC=90°+15°=105°;
②如图2,AB⊥CD于G,OA交DC于H,
∵∠A=45°,∠AGH=90°,
∴∠CHO=∠AHG=45°,
∵∠DCO=60°,
∴∠AOC=180°-60°-45°=75°;
故答案为:105°或75°.
【点睛】
此题考查了三角形的角度计算,正确掌握三角板的度数及各角度的关系是解题的关键.
4、 北
东 45 1000
【解析】
【分析】
图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.
【详解】
解:邮局在学校北偏东45°的方向上,距离学校 1000米.
故答案为:北,东,45,1000.
【点睛】
此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.
5、17
【解析】
【分析】
根据A在B的左边,C在D的左边,M,N分别是的中点,得出AM=BM,CN=DN,当点B在点C的右边时满足条件,分三种情况,当点B在NM上,设AM=BM=x,得出BN=MN-BM=5-x,ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当MN在BC上,设AM=BM=x,CM=7-x, 得出ND=CN=12-x,可求AD=AM+MN+ND=x+5+12-x=17;当点C在MN上,设AM=BM=x,MC=BM-BC=x-7,得出CN=DN=MN-MC=5-(x-7)=12-x,可求AD=AM+MN+ND=x+5+12-x=17即可.
【详解】
解:∵A在B的左边,C在D的左边,M,N分别是的中点,
∴AM=BM,CN=DN,
当点B在点C的右边时满足条件,分三种情况:
当点B在NM上,设AM=BM=x,
∴BN=MN-BM=5-x,
∴CN=BC+BN=7+5-x=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当MN在BC上,设AM=BM=x,
∴BN=x-5,CM=7-x,
∴CN=CM+MN=7-x+5=12-x,
∴ND=CN=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
当点C在MN上,设AM=BM=x,
∴MC=BM-BC=x-7,
∴CN=DN=MN-MC=5-(x-7)=12-x,
∴AD=AM+MN+ND=x+5+12-x=17;
综合得AD=17.
故答案为17.
【点睛】
本题考查线段中点有关的计算,线段和差,整式加减运算,分类思想的应用使问题得以全面解决是解题关键.
三、解答题
1、 (1),见解析
(2)50
【解析】
【分析】
(1)设AB=2x,BC=5x,CD=3x,则AD=10x,根据M为AD的中点,可得AM=DM=AD=5x,表示出CM,即可求解;
(2)由CM=10cm,CM=2x,得到关于x的方程,解方程即可求解.
(1)
.理由如下:
设AB=2 x,BC=5 x,CD=3 x,则AD=10 x,
∵M为AD的中点,
∴AM=DM=AD=5x,
∴CM=DM-CD=5x-3x=2x,
∴AB=CM;
(2)
∵CM=10cm,CM=2x,
∴2 x=10,
解得x=5,
∴AD=10x=50cm.
【点睛】
本题考查了两点间的距离,一元一次方程的应用,利用线段的和差,线段中点的性质是解题关键.
2、 (1)正西,100
(2)南偏东77°
(3)见解析
【解析】
【分析】
(1)根据图中位置解决问题即可.
(2)根据图中位置解决问题即可.
(3)根据题意画出路线即可.
(1)
燕山前进二小在燕山前进中学的正西方向,距离大约是.
故答案为:正西,100.
(2)
燕化附中在燕山向阳小学的南偏东方向
故答案为:南偏东.
(3)
小辰行走的路线如图:
【点睛】
本题考查作图应用与设计,方向角等知识,解题的关键是熟练掌握基本知识.
3、 (1)9
(2)
(3)见解析
【解析】
【分析】
(1)分别以为始边计数数角,从而可得答案;
(2)先求解 再求解 从而可得答案;
(3)分别求解从而可得结论.
(1)
解:图中小于平角的角∠AOD、∠AOC、∠AOE、∠DOC、∠DOE、∠DOB、∠COE、∠COB、∠EOB.
所以图中小于平角的角共有9个.
(2)
解:因为,OD平分∠AOC,
所以,
又
所以
(3)
解:因为,,
所以
又因为
所以,
所以OE平分∠BOC.
【点睛】
本题考查的是角的含义,角的和差运算,角平分线的定义,掌握“角平分线的定义”是解本题的关键.
4、 (1)25 ,互补
(2)①成立 ,理由见解析;②共有3种情况,当x=35时,互余的角有4对;当x=20时,互余的角有6对;当0< x <50且x≠35和20时,互余的角有3对
【解析】
【分析】
(1)利用周角的定义可得再求解 即可得到答案;
(2)①利用结合角的和差运算即可得到结论;②先利用 求解 再分三种情况讨论:如图,当时,则 如图,当时,则 如图,当且时,从而可得答案.
(1)
解:
而
故答案为:, 互补
(2)
解:①成立,理由如下:
②
如图,当时,则
所以图中以为顶点互余的角有:;;
;共4对;
如图,当时,则
所以图中以为顶点互余的角有:;;
;;;共6对;
如图,当且时,
所以图中以为顶点互余的角有:;;共3对.
【点睛】
本题考查的是几何图形中角的和差运算,互余与互补的含义,熟练的运用互余与互补的概念判断余角与补角,清晰的分类讨论是解本题的关键.
5、 (1)5
(2)5
(3)存在,9或0
【解析】
【分析】
(1)根据绝对值的非负性及偶次方的非负性求出a=-5,b=10,得到AB=10-(-5)=15,由T为线段AB上靠近点B的三等分点,得到BT=5,根据OT=OB-BT求出结果;
(2)由运动速度得到BD=2QC,由C、D运动到任意时刻时,总有,得到BQ=2AQ,即可求出AQ;
(3)先求出BF=4,EF=2,AE=9.当时,得到9-3m+4-m=9,当时,得到3m-9+4-m=9;当m>4时,得到3m-9+m-4=9,解方程即可.
(1)
解:∵,
∴a+5=0,b+2a=0,
∴a=-5,b=10,
∴点A表示数-5,点B表示数10,
∴AB=10-(-5)=15,
∵T为线段AB上靠近点B的三等分点,
∴BT=5,
∴OT=OB-BT=5;
(2)
解:∵C、D两点分别从Q、B出发以个单位/s,个单位/s的速度沿直线BA向左运动(C在线段AQ上,D在线段BQ上),
∴BD=2QC,
∵C、D运动到任意时刻时,总有,
∴BQ=2AQ,
∵BQ+AQ=15,
∴AQ=5;
(3)
解:∵,,
∴BF=4,EF=2,AE=9,
设点M运动ms,
当时,如图,
∵EM=9-3m,BN=4-m,,
∴9-3m+4-m=9,
解得m=1,
∴MN=9-3m+2+m=9;
当时,如图,
∵EM=3m-9,BN=4-m,,
∴3m-9+4-m=9,
解得m=7(舍去);
当m>4时,如图,
∵EM=3m-9,BN=m-4,,
∴3m-9+m-4=9,
解得m=;
∴MN=15-3m+m-4=0;
综上,存在,此时MN的长度为9或0.
【点睛】
此题考查数轴上两点之间的距离,绝对值的非负性及偶次方的非负性,数轴上动点问题,一元一次方程,正确掌握数轴上两点间的距离公式是解题的关键.
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试当堂检测题,共21页。试卷主要包含了如图,一副三角板,延长线段至点,分别取等内容,欢迎下载使用。
初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题: 这是一份初中数学鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试课后练习题,共26页。
鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题: 这是一份鲁教版 (五四制)六年级下册第五章 基本平面图形综合与测试随堂练习题,共22页。试卷主要包含了下列说法正确的是,上午10,下列说法等内容,欢迎下载使用。